The impact of an InGaN/GaN superlattice (SL) on AlGaN/GaN high electron mobility transistor characteristics was investigated, and two effects were discovered: one is a substantial improvement in the conduction characteristics as a result of the InGaN/GaN channel layer, while the other is the effect of diffusion suppression relating to impurities or point defects from the carbon-doped layer. The InGaN/GaN SL was used as a channel layer to improve the mobility and concentration of the two-dimensional channel electron gas. It was found that by inserting the InGaN/GaN SL just above a C-doped semi-insulating GaN layer as the InGaN underlayer, the conduction current of the SL with five periods (5SL) was observed to be much higher than that of the conventional material with a GaN channel layer of over 2 μm in thickness. The results demonstrated that this SL layer is effective in suppressing the diffusion of impurities or point defects originating from the carbon-doped layer, resulting in the device performance improvement.
An AlGaN/GaN high electron mobility transistor (HEMT) structure was grown on a semi‐insulating (SI) GaN layer or substrate to suppress a leakage current and achieve a high breakdown voltage. Fe can be used as doping material to obtain SI‐GaN. However, the relationship between the Fe concentration in the GaN layers and its influence on HEMT characteristics has not yet been investigated. In this study, we therefore investigated the influence of Fe concentration in the GaN layers on HEMT characteristics. The GaN layers containing several Fe concentrations were grown by hydride vapor phase epitaxy (HVPE). The Fe concentration was varied from 3 × 1017 to 3 × 1020 atoms cm−3. It was determined that the source‐drain current (IDS) decreased as the Fe concentration increased. In the case of a low Fe concentration of 3 × 1017 atoms cm−3, IDS was almost the same as that of HEMT on the non‐Fe‐doped GaN template. Thus, HEMT characteristics deteriorated as the Fe concentration increased. The channel layer played a role in blocking the adverse effects of Fe doping on the two‐dimensional electron gas concentration in AlGaN/GaN. Moreover, it was shown that the GaN channel layer must become thicker as the Fe concentration of the GaN layers increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.