The human synovium contains mesenchymal stem cells (MSCs), which are multipotential non-hematopoietic progenitor cells that can differentiate into a variety of mesenchymal lineages and they may therefore be a candidate cell source for tissue repair. However, the molecular mechanisms by which this can occur are still largely unknown. Mouse primary cell culture enables us to investigate the molecular mechanisms underlying various phenomena because it allows for relatively easy gene manipulation, which is indispensable for the molecular analysis. However, mouse synovial mesenchymal cells (SMCs) have not been established, although rabbit, cow, and rat SMCs are available, in addition to human MSCs. The aim of this study was to establish methods to harvest the synovium and to isolate and culture primary SMCs from mice. As the mouse SMCs were not able to be harvested and isolated using the same protocol for human, rat and rabbit SMCs, the protocol for humans was modified for SMCs from the Balb/c mouse knee joint. The mouse SMCs obtained showed superior proliferative potential, growth kinetics and colony formation compared to cells derived from muscle and bone marrow. They expressed PDGFRá and Sca-1 detected by flow cytometry, and showed an osteogenic, adipogenic and chondrogenic potential similar or superior to the cells derived from muscle and bone marrow by demonstrating in vitro osteogenesis, adipogenesis and chondrogenesis. In conclusion, we established a primary mouse synovial cell culture method. The cells derived from the mouse synovium demonstrated both the ability to proliferate and multipotentiality similar or superior to the cells derived from muscle and bone marrow.
BackgroundS100 family proteins have recently been identified as biomarkers in various cancers. Of this protein family, S100A14 and S100A16 are also believed to play an important role in tumor progression. The aim of the present study was to clarify the clinical significance and functional role of these molecules in breast cancer.MethodsIn a clinical study, an immunohistochemical analysis of S100A14 and S100A16 expression in archival specimens of primary tumors of 167 breast cancer patients was performed. The relationship of S100A14 and S100A16 expression to patient survival and clinicopathological variables was statistically analyzed. In an experimental study, the subcellular localization and function of these molecules was examined by using the human breast cancer cell lines MCF7 and SK-BR-3, both of which highly express S100A14 and S100A16 proteins. Cells transfected with expression vectors and siRNA for these genes were characterized using in vitro assays for cancer invasion and metastasis.ResultsImmunohistochemical analysis of 167 breast cancer cases showed strong cell membrane staining of S100A14 (53% of cases) and S100A16 (31% of cases) with a significant number of cases with co-expression (p < 0.001). Higher expression levels of these proteins were significantly associated with a younger age (<60 years), ER-negative status, HER2-positive status and a poorer prognosis. Co-expression of the two proteins showed more aggressive features with poorer prognosis. In the human breast cancer cell lines MCF7 and SK-BR-3, both proteins were colocalized on the cell membrane mainly at cell-cell attachment sites. Immunoprecipitation and immunofluorescence analyses demonstrated that the 100A14 protein can bind to actin localized on the cell membrane in a calcium-independent manner. A Boyden chamber assay showed that S100A14 and S100A16 knockdown substantially suppressed the invasive activity of both cell lines. Cell motility was also inhibited by S100A14 knockdown in a modified dual color wound-healing assay.ConclusionsTo our knowledge, this is the first report showing the correlation of expression of S100A14, S100A16, and co-expression of these proteins with poor prognosis of breast cancer patients. In addition, our findings indicate that S100A14 and S100A16 can promote invasive activity of breast cancer cells via an interaction with cytoskeletal dynamics. S100A14 and S100A16 might be prognostic biomarkers and potential therapeutic targets for breast cancer.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1059-6) contains supplementary material, which is available to authorized users.
Laminin α1 (Lama1), which is a subunit of laminin-1 (laminin-111), a heterotrimeric ECM protein, is essential for embryonic development and promotes neurite outgrowth in culture. Because the deletion of Lama1 causes lethality at early embryonic stages in mice, the in vivo role of Lama1 in neural development and functions has not yet been possible to determine. In this study, we generated conditional Lama1 knockout (Lama1CKO) mice in the epiblast lineage using Sox2-Cre mice. These Lama1CKO mice survived, but displayed behavioral disorders and impaired formation of the cerebellum. Deficiency of Lama1 in the pial basement membrane of the meninges resulted in defects in the conformation of the meninges. During cerebellar development, Lama1 deficiency also caused a decrease in the proliferation and migration of granule cell precursors, disorganization of Bergmann glial fibers and endfeet, and a transient reduction in the activity of Akt. A marked reduction in numbers of dendritic processes in Purkinje cells was observed in Lama1CKO mice. Together, these results indicate that Lama1 is required for cerebellar development and functions.
Cell adhesion is essential for proper tissue architecture and function in multicellular organisms. Cell adhesion molecules not only maintain tissue integrity but also possess signaling properties that contribute to diverse cellular events such as cell growth, survival, differentiation, polarity, and migration; however, the underlying molecular basis remains poorly defined. Here we identify that the cell adhesion signal initiated by the tight-junction protein claudin-6 (CLDN6) regulates nuclear receptor activity. We show that CLDN6 recruits and activates Src-family kinases (SFKs) in second extracellular domain-dependent and Y196/200-dependent manners, and SFKs in turn phosphorylate CLDN6 at Y196/200. We demonstrate that the CLDN6/SFK/PI3K/AKT axis targets the AKT phosphorylation sites in the retinoic acid receptor γ (RARγ) and the estrogen receptor α (ERα) and stimulates their activities. Interestingly, these phosphorylation motifs are conserved in 14 of 48 members of human nuclear receptors. We propose that a similar link between diverse cell adhesion and nuclear receptor signalings coordinates a wide variety of physiological and pathological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.