For geochemical analysis such as stable isotope ratio, radiocarbon dating and minor element analysis for a single species of microfossils, a large number of specimens, is required. Collecting specimens one by one under a microscope requires enormous time and effort. In this study, we developed a device that automates these efforts and can be used without expert knowledge. Microfossils can be accurately classified and identified to taxonomic species level using deep learning, which is one of the learning methods of artificial intelligence (AI), and picked up using a micromanipulator installed in the microscope with an automated motorized X-Y stage. A prototype of the classification model AI-PIC_20181024 showed the ability to classify microfossil species Cycladophora davisiana and Actinomma boreale (radiolarians) with accuracy exceeding 90% at a confidence level > 0.90. Using this method, it is possible to collect a large number of particles with speed and accuracy that cannot be achieved by a human technician. Although this technology can only be used for specific species of microfossils, it greatly reduces the hand work of picking and also enables chemical analysis, such as isotope ratio and minor element analysis, for small microfossil species for which it had been difficult to collect enough specimens. In addition to microfossils, this technology can be applied to other particles, with applications expected in various fields, such as medical, food, horticulture, and materials.
Microfossils are a powerful tool in earth sciences, and they have been widely used for the determination of geological age and in paleoenvironmental studies. However, the identification of fossil species requires considerable time and labor by experts with extensive knowledge and experience. In this study, we successfully automated the acquisition of microfossil data using an artificial intelligence system that employs a computer-controlled microscope and deep learning methods. The system was used to calculate changes in the relative abundance (%) of Cycladophora davisiana, a siliceous microfossil species (Radiolaria) that is widely used as a stratigraphic tool in studies on Pleistocene sediments in the Southern Ocean. The estimates obtained using this system were consistent with the results obtained by a human expert (< ± 3.2%). In terms of efficiency, the developed system was capable of performing the classification tasks approximately three times faster than a human expert performing the same task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.