The third-order optical nonlinearities of carbon nanotube modified conjugated polymer in the femtosecond and nanosecond regimes Two-dimensionally conjugated molecules: The importance of low molecular symmetry for large third-order nonlinear optical effects
In dense traffic railway networks, trains may often slow down or stop between stations owing to previous train delays. If preceding train trajectory can be predicted, energy‐efficient driving can be achieved by suppressing unnecessary speed changes. In this paper, we propose an algorithm to find energy‐efficient driving considering fixed‐block signaling (FBS) system by using dynamic programming (DP). DP is suitable for use because it can optimize the control inputs with discrete and state constraints. In this paper, we discuss energy‐efficient driving by considering a FBS system using some case studies of simulation. In the simulation, we examine a technique to drive an express train in an energy‐efficient way when the preceding local train is running toward the station with passing loops. The results show that the proposed method can derive complex speed profiles for energy‐efficient driving and the train can be operated with a maximum reduced energy consumption of 8.3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.