We have previously shown that modification with succinylated poly(glycidol) (SucPG) provides stable egg yolk phosphatidylcholine (EYPC) liposomes with pH-sensitive fusogenic property. Toward production of efficient pH-sensitive liposomes, in this study, we newly prepared three carboxylated poly(glycidol) derivatives with varying hydrophobicities by reacting poly(glycidol) with glutaric anhydride, 3-methylglutaric anhydride, and 1,2-cyclohexanedicarboxylic anhydride, respectively, designated as GluPG, MGluPG, and CHexPG. Correlation between side-chain structures of these polymers and their respective abilities to sensitize stable liposomes to pH was investigated. These polymers are soluble in water at neutral pH but became water-insoluble in weakly acidic conditions. The pH at which the polymer precipitated was higher in the order SucPG < GluPG < MGluPG < CHexPG, which is consistent with the number of carbon atoms of these polymers' side chains. Although CHexPG destabilized EYPC liposomes even at neutral pH, attachment of other polymers provided pH-sensitive properties to the liposomes. The liposomes bearing polymers with higher hydrophobicity exhibited more intense responses, such as content release and membrane fusion, at mildly acidic pH and achieved more efficient cytoplasmic delivery of membrane-impermeable dye molecules. As a result, modification with appropriate hydrophobicity, MGluPG, produced highly potent pH-sensitive liposomes, which might be useful for efficient cytoplasmic delivery of bioactive molecules, such as proteins and genes.
Efficient vaccine carriers for cancer immunotherapy require two functions: antigen delivery to dendritic cells (DCs) and the activation of DCs, a so-called adjuvant effect. We previously reported antigen delivery system using liposomes modified with pH-sensitive polymers, such as 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG), for the induction of antigen-specific immune responses. We reported that inclusion of cationic lipids to MGlu-HPG-modified liposomes activates DCs and enhances antitumor effects. In this study, CpG-DNA, a ligand to Toll-like receptor 9 (TLR9) expressing in endosomes of DCs, was introduced to MGlu-HPG-modified liposomes containing cationic lipids using two complexation methods (Pre-mix and Post-mix) for additional activation of antigen-specific immunity. For Pre-mix, thin membrane of lipids and polymers were dispersed by a mixture of antigen/CpG-DNA. For Post-mix, CpG-DNA was added to pre-formed liposomes. Both Pre-mix and Post-mix delivered CpG-DNA to DC endosomes, where TLR9 is expressing, more efficiently than free CpG-DNA solution did. These liposomes promoted cytokine production from DCs and the expression of co-stimulatory molecules in vitro and induced antigen-specific immune responses in vivo. Both Pre-mix and Post-mix exhibited strong antitumor effects compared with conventional pH-sensitive polymer-modified liposomes. Results show that inclusion of multiple adjuvant molecules into pH-sensitive polymer-modified liposomes and suitable CpG-DNA complexation methods are important to design potent vaccine carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.