This review focuses on the use of Bayesian Data Analysis and Machine Learning Techniques to study and analyze flow problems typical to polymer melt systems. We present a brief summary of Bayesian probability theory, and show how it can be used to solve the parameter estimation and model selection problems, for cases when the model(s) are known. For the more complex non-parametric regression problem, in which the functional form of the model is not known, we show how Machine-Learning (through Gaussian Processes) can be used to learn arbitrary functions from data. In particular, we show examples for solving steady-state flow problem as well as learning the constitutive relations of polymer flows with memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.