Direct deposition of Pt and Pd nanoparticles onto c-Al 2 O 3 powders was studied by using a pulsed arc plasma process under vacuum to use them as an automotive catalyst. As deposited Pt catalyst exhibited a higher metal dispersion and thus a higher catalytic activity for CO oxidation, compared to the conventional Pt/Al 2 O 3 prepared by wet impregnation. In contrast, Pd/Al 2 O 3 prepared by the arc plasma method was less active because of its metallic state of Pd with a lower dispersion. A weak interaction between precious metals and c-Al 2 O 3 is not enough for thermal stabilization of as deposited nanoparticles during ageing in a stream of 10% H 2 O in air at 900°C.
The nasal cavity and olfactory bulb (OB) of the Japanese jungle crow (Corvus macrorhynchos) were studied using computed tomography (CT) and histochemical staining. The nasal septum divided the nasal cavity in half. The anterior and maxillary conchae were present on both sides of the nasal cavity, but the posterior concha was indistinct. A small OB was present on the ventral surface of the periphery of the cerebrum. The OB-brain ratio--the ratio of the size of the OB to that of the cerebral hemisphere--was 6.13. The olfactory nerve bundles projected independently to the OB, which appeared fused on gross examination. Histochemical analysis confirmed the fusion of all OB layers. Using a neural tracer, we found that the olfactory nerve bundles independently projected to the olfactory nerve layer (ONL) and glomerular layer (GL) of the left and right halves of the fused OB. Only 4 of 21 lectins bound to the ONL and GL. Thus, compared with mammals and other birds, the jungle crow may have a poorly developed olfactory system and an inferior sense of olfaction. However, it has been contended recently that the olfactory abilities of birds cannot be judged from anatomical findings alone. Our results indicate that the olfactory system of the jungle crow is an interesting research model to evaluate the development and functions of vertebrate olfactory systems.
ABSTRACT. In this study, the microstructure of the cornea was compared among chickens (Gallus gallus), jungle crows (Corvus macrorhynchos), rats (Rattus norvegicus) and rabbits (Oryctolagus cuniculus). The density of keratocytes in the mammals was over 3 times that in the birds. The size of the keratocytes in the birds and rat were significantly lower than those in the rabbit. Using scanning and transmission electron microscopy, the bundles of collagen fibers in the birds were found to be well arranged, while those in the mammals were arranged randomly. The collagen lamellae of the birds were significantly thicker than those of the mammals, and the numbers of collagen lamellae in the birds were significantly smaller than in the mammals. The center-to-center distances between the collagen fibrils of the chicken and rabbit were significantly larger than those of the crow and rat. The densities of collagen fibrils in the chicken and rabbit were significantly less than those of the crow and rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.