Translocated in liposarcoma (TLS) is an RNA-binding protein and a transcription-regulatory sensor of DNA damage. TLS binds promoter-associated noncoding RNA (pncRNA) and inhibits histone acetyltransferase (HAT) activity of CREB-binding protein (CBP)/E1A-binding protein P300 (p300) on the cyclin D1 () gene. Although post-translational modifications of TLS, such as arginine methylation, are known to regulate TLS's nucleocytoplasmic shuttling and assembly in stress granules, its interactions with RNAs remain poorly characterized. Herein, using various biochemical assays, we confirmed the earlier observations that TLS is methylated by protein arginine methyltransferase 1 (PRMT1) The arginine methylation of TLS disrupted binding to pncRNA and also prevented binding of TLS to and inhibition of CBP/p300. This result indicated that arginine methylation of TLS abrogates both binding to pncRNA and TLS-mediated inhibition of CBP/p300 HAT activities. We also report that an arginine residue within the Arg-Gly-Gly domain of TLS, Arg-476, serves as the major determinant for binding to pncRNA. Either methylation or mutation of Arg-476 of TLS significantly decreased pncRNA binding and thereby prevented a pncRNA-induced allosteric alteration in TLS that is required for its interaction with CBP/p300. Moreover, unlike WT TLS, an R476A TLS mutant did not inhibit promoter activity in luciferase reporter assays. Taken together, we propose the hypothesis that arginine methylation of TLS regulates both TLS-nucleic acid and TLS-protein interactions and thereby participates in transcriptional regulation.
pncRNA-D is an irradiation-induced 602-nt long noncoding RNA transcribed from the promoter region of the cyclin D1 (CCND1) gene. CCND1 expression is predicted to be inhibited through an interplay between pncRNA-D and RNA-binding protein TLS/FUS. Because the pncRNA-D–TLS interaction is essential for pncRNA-D–stimulated CCND1 inhibition, here we studied the possible role of RNA modification in this interaction in HeLa cells. We found that osmotic stress induces pncRNA-D by recruiting RNA polymerase II to its promoter. pncRNA-D was highly m6A-methylated in control cells, but osmotic stress reduced the methylation and also arginine methylation of TLS in the nucleus. Knockdown of the m6A modification enzyme methyltransferase-like 3 (METTL3) prolonged the half-life of pncRNA-D, and among the known m6A recognition proteins, YTH domain-containing 1 (YTHDC1) was responsible for binding m6A of pncRNA-D. Knockdown of METTL3 or YTHDC1 also enhanced the interaction of pncRNA-D with TLS, and results from RNA pulldown assays implicated YTHDC1 in the inhibitory effect on the TLS–pncRNA-D interaction. CRISPR/Cas9-mediated deletion of candidate m6A site decreased the m6A level in pncRNA-D and altered its interaction with the RNA-binding proteins. Of note, a reduction in the m6A modification arrested the cell cycle at the G0/G1 phase, and pncRNA-D knockdown partially reversed this arrest. Moreover, pncRNA-D induction in HeLa cells significantly suppressed cell growth. Collectively, these findings suggest that m6A modification of the long noncoding RNA pncRNA-D plays a role in the regulation of CCND1 gene expression and cell cycle progression.
We previously reported that auraptene (7-geranyloxycoumarin, AUR), widely occurring in citrus fruit, is a structurally novel type of effective cancer-preventive agent, as manifested in several rodent models. However, its bio-availability and metabolism in biological systems have yet to be investigated. In the present study, we examined the chemical stability of AUR at pH 1.57 and 37 degrees C (as a stomach digestion model) and observed its stoichiometric conversion to umbelliferone [7-hydroxycoumarin, UMB; half-life (t1/2) = 15 h; 7-ethoxycoumarin (ETC) was stable for 24 h]. Differentiated Caco-2 cells, a human colorectal adenocarcinoma cell line, were used as a small intestine model. ETC permeated the basolateral (portal vein) side of Caco-2 cells in a time-dependent manner; AUR slightly permeated the cells, but with an intracellular accumulation. Epoxyauraptene and UMB were detected when AUR was treated with the rat liver S-9 mixture. ETC was also converted to UMB, but its t1/2 of two hours was much shorter than that of AUR (> 24 h). This suggests that AUR, bearing a geranyloxyl side chain, is a relatively metabolism-resistant substrate for cytochrome P-450 enzymes and, thus, is stable in the liver compared with ETC. Oral administration of AUR by gavage at 50-200 mg/kg body wt dose dependently induced glutathione S-transferase (GST) activity in mouse livers without affecting cytochrome P-450 activity. Using 10 coumarin-related compounds, we found that only those coumarins having a 7-alkyloxyl group induced GST, but not cytochrome P-450, activity. The present study presumes that AUR accumulates in the epithelial cells of the small intestine and then gradually permeates into the portal vein. Stable localizability of AUR in the colon and liver may be associated with the induction of GST activity, which is important as the action mechanism for suppression of rodent chemical carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.