We report on the determination of the astrometric, spin, and orbital parameters for PSR J1953+1846 A, a "black widow" binary millisecond pulsar in the globular cluster M71. By using the accurate position and orbital parameters obtained from radio timing, we identified the optical companion in Advanced Camera for Surveys/ Hubble Space Telescope images. It turns out to be a faint (m 24 F606W , m 23 F814W ) and variable star located at only ∼0″. 06 from the pulsar timing position. The light curve shows a maximum at the pulsar inferior conjunction and a minimum at the pulsar superior conjunction, thus confirming the association with the system. The shape of the optical modulation suggests that the companion star is heated, likely by the pulsar wind. The comparison with the X-ray light curve possibly suggests the presence of an intra-binary shock due to the interaction between the pulsar wind and the material released by the companion. This is the second identification (after COM-M5C) of an optical companion to a black widow pulsar in a globular cluster. Interestingly, the two companions show a similar light curve and share the same position in the color-magnitude diagram.
Low-temperature plasma-enhanced chemical vapor deposition of amorphous carbon (a-C:H) films was investigated for surface passivation of carbon-doped silicon oxide (SiOCH) films. The a-C:H films were deposited using CH4 and Ar gases at 40–65°C. FT-IR results showed that the deposited films are a-C:H which incorporates hydrocarbon groups. In current−voltage measurements, the a-C:H showed a low leakage current of ~10–10 A/cm2 in air, indicating that the a-C:H films have a potential as a surface passivation layer to prevent moisture absorption in air. The insulating properties of room-temperature deposited SiOCH covered by the a-C:H strongly depended on radio frequency (RF) power in the SiOCH deposition. In the SiOCH film deposited at high RF power of 200 W, the resistivity in air was improved by the a-C:H passivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.