COVID-19 epidemic in Malaysia started as a small wave of 22 cases in January 2020 through imported cases. It was followed by a bigger wave mainly from local transmissions resulting in 651 cases. The following wave saw unexpectedly three digit number of daily cases following a mass gathering urged the government to choose a more stringent measure. A limited lock-down approach called Movement Control Order (MCO) was immediately initiated to the whole country as a way to suppress the epidemic trajectory. The lock-down causes a major socio-economic disruption thus the ability to forecast the infection dynamic is urgently required to assist the government on timely decisions. Limited testing capacity and limited epidemiological data complicate the understanding of the future infection dynamic of the COVID-19 epidemic.
The most commonly injured ligament in the human body is an anterior cruciate ligament (ACL). ACL injury is standard among the football, basketball and soccer players. The study aims to detect anterior cruciate ligament injury in an early stage via efficient and thorough automatic magnetic resonance imaging without involving radiologists, through a deep learning method. The proposed approach in this paper used a customized 14 layers ResNet-14 architecture of convolutional neural network (CNN) with six different directions by using class balancing and data augmentation. The performance was evaluated using accuracy, sensitivity, specificity, precision and F1 score of our customized ResNet-14 deep learning architecture with hybrid class balancing and real-time data augmentation after 5-fold cross-validation, with results of 0.920%, 0.916%, 0.946%, 0.916% and 0.923%, respectively. For our proposed ResNet-14 CNN the average area under curves (AUCs) for healthy tear, partial tear and fully ruptured tear had results of 0.980%, 0.970%, and 0.999%, respectively. The proposing diagnostic results indicated that our model could be used to detect automatically and evaluate ACL injuries in athletes using the proposed deep-learning approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.