These authors suggest that laparoscopic heminephrectomy is a feasible option in the surgical management of diseases of the horseshoe kidney and can be performed safely using a transperitoneal or retroperitoneal approach.
The explosive growth of social networks in recent times has presented a powerful source of information to be utilized as an extra source for assisting in the social recommendation problems. The social recommendation methods that are based on probabilistic matrix factorization improved the recommendation accuracy and partly solved the cold-start and data sparsity problems. However, these methods only exploited the explicit social relations and almost completely ignored the implicit social relations. In this article, we firstly propose an algorithm to extract the implicit relation in the undirected graphs of social networks by exploiting the link prediction techniques. Furthermore, we propose a new probabilistic matrix factorization method to alleviate the data sparsity problem through incorporating explicit friendship and implicit friendship. We evaluate our proposed approach on two real datasets, Last.Fm and Douban. The experimental results show that our method performs much better than the state-of-the-art approaches, which indicates the importance of incorporating implicit social relations in the recommendation process to address the poor prediction accuracy.
Software defect prediction (SDP) in the initial period of the software development life cycle (SDLC) remains a critical and important assignment. SDP is essentially studied during few last decades as it leads to assure the quality of software systems. The quick forecast of defective or imperfect artifacts in software development may serve the development team to use the existing assets competently and more effectively to provide extraordinary software products in the given or narrow time. Previously, several canvassers have industrialized models for defect prediction utilizing machine learning (ML) and statistical techniques. ML methods are considered as an operative and operational approach to pinpoint the defective modules, in which moving parts through mining concealed patterns amid software metrics (attributes). ML techniques are also utilized by several researchers on healthcare datasets. This study utilizes different ML techniques software defect prediction using seven broadly used datasets. The ML techniques include the multilayer perceptron (MLP), support vector machine (SVM), decision tree (J48), radial basis function (RBF), random forest (RF), hidden Markov model (HMM), credal decision tree (CDT), K-nearest neighbor (KNN), average one dependency estimator (A1DE), and Naïve Bayes (NB). The performance of each technique is evaluated using different measures, for instance, relative absolute error (RAE), mean absolute error (MAE), root mean squared error (RMSE), root relative squared error (RRSE), recall, and accuracy. The inclusive outcome shows the best performance of RF with 88.32% average accuracy and 2.96 rank value, second-best performance is achieved by SVM with 87.99% average accuracy and 3.83 rank values. Moreover, CDT also shows 87.88% average accuracy and 3.62 rank values, placed on the third position. The comprehensive outcomes of research can be utilized as a reference point for new research in the SDP domain, and therefore, any assertion concerning the enhancement in prediction over any new technique or model can be benchmarked and proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.