Adult neocortex contains dividing satellite glia population even though their characteristics and functions have still remained unknown. Nestin(+)/NG2(+) cells as major fraction of dividing glial cells express bicuculline-sensitive gamma-aminobutyric acid A (GABA(A)) receptors and receive GABAergic inputs. Due to their high [Cl(-)](i), GABAergic activation depolarized the cells and then induced Ca(2+) influx into them. To assess an effect of this GABAergic excitation, we looked for the expression of neurotrophic factors. Among them, we detected the expression of brain-derived neurotrophic factor (BDNF) on the cells. The level of BDNF expression was elevated after cortical ischemia, and this elevation was blocked by bumetanide, an inhibitor for NKCC1 that blocks the GABAergic depolarization. Furthermore, performing a modified adhesive removal test, we observed that the treatment of bumetanide significantly attenuated the recovery in somatosensory dysfunction. Our results may shed a light on satellite glia population in the cortex and imply their roles in the functional recovery after ischemic injuries.
We tested various thymidine analogues for induction of a senescence-like phenomenon in HeLa cells. CldU, BrdU, and IdU similarly induced the morphology of senescent cells and typical senescence markers. Thymidine analogues other than 5-halogenated forms caused only cell death. BrdU efficiently killed the cells in cooperation with irradiation with light and a brief treatment with Hoechst 33258, but CldU did not at all. 5-Halogenated thymidine analogues were thus shown to be specific inducers of cellular senescence in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.