Hippocampal activity influences neurogenesis in the adult dentate gyrus; however, little is known about the involvement of the hippocampal circuitry in this process. In the subgranular zone of the adult dentate gyrus, neurogenesis involves a series of differentiation steps from radial glia-like stem/progenitor (type-1) cells, to transiently amplifying neuronal progenitor (type-2) cells, to postmitotic neurons. In this study, we conducted GFP-targeted recordings of progenitor cells in fresh hippocampal slices from nestin-GFP mice and found that neuronal progenitor (type-2) cells receive active direct neural inputs from the hippocampal circuitry. This input was GABAergic but not glutamatergic. The GABAergic inputs depolarized type-2 cells because of their elevated [Cl(-)](i). This excitation initiated an increase of [Ca(2+)](i) and the expression of NeuroD. A BrdU-pulse labeling study with GABA(A)-R agonists demonstrated the promotion of neuronal differentiation via this GABAergic excitation. Thus, it appears that GABAergic inputs to hippocampal progenitor cells promote activity-dependent neuronal differentiation.
Neurogenesis in the dentate gyrus of the adult mammalian hippocampus has been proven in a series of studies, but the differentiation process toward newborn neurons is still unclear. In addition to the immunohistochemical study, electrophysiological membrane recordings of precursor cells could provide an alternative view to address this differentiation process. In this study, we performed green fluorescent protein (GFP)-guided selective recordings of nestin-positive progenitor cells in adult dentate gyrus by means of nestin-promoter GFP transgenic mice, because nestin is a typical marker for precursor cells in the adult dentate gyrus. The patch-clamp recordings clearly demonstrated the presence of two distinct subpopulations (type I and type II) of nestin-positive cells. Type I cells had a lower input resistance value of 77.1 M(Omega) (geometric mean), and their radial processes were stained with anti-glial fibrillary acidic protein antibody. On the other hand, type II nestin-positive cells had a higher input resistance value of 2110 MOmega and expressed voltage-dependent sodium current. In most cases, type II cells were stained with anti-polysialylated neural cell adhesion molecule. Taken together with a bromodeoxyuridine pulse-chase analysis, our results may reflect a rapid and dynamic cell conversion of nestin-positive progenitor, from type I to type II, at an early stage of adult neurogenesis in the dentate gyrus.
Maternal obesity may affect the child's long-term development and health. However, there is little information about the involvement of maternal obesity in the brain development of offspring. Here, we investigated the effects of maternal obesity on the hippocampal formation of offspring. Adult female mice were fed either a normal diet (ND, 4% fat) or a high-fat diet (HFD, 32% fat) 6 wk before mating and throughout pregnancy and the majority of lactation. We found that infants from HFD-fed dams (HFD offspring) showed obesity and hyperlipidemia during suckling. In HFD offspring, lipid peroxidation was promoted in serum and the hippocampal dentate gyrus, where neurogenesis takes place throughout postnatal life. Using a BrdU-pulse labeling study, we showed that malondialdehyde, a product of peroxidized lipids, reduced the proliferation of hippocampal progenitor cells in vitro and that neurogenesis in HFD offspring during postnatal development was similarly lowered relative to the ND animals. These results indicated that maternal obesity impairs hippocampal progenitor cell division and neuronal production in young offspring possibly due to metabolic and oxidative changes.
Adult neocortex contains dividing satellite glia population even though their characteristics and functions have still remained unknown. Nestin(+)/NG2(+) cells as major fraction of dividing glial cells express bicuculline-sensitive gamma-aminobutyric acid A (GABA(A)) receptors and receive GABAergic inputs. Due to their high [Cl(-)](i), GABAergic activation depolarized the cells and then induced Ca(2+) influx into them. To assess an effect of this GABAergic excitation, we looked for the expression of neurotrophic factors. Among them, we detected the expression of brain-derived neurotrophic factor (BDNF) on the cells. The level of BDNF expression was elevated after cortical ischemia, and this elevation was blocked by bumetanide, an inhibitor for NKCC1 that blocks the GABAergic depolarization. Furthermore, performing a modified adhesive removal test, we observed that the treatment of bumetanide significantly attenuated the recovery in somatosensory dysfunction. Our results may shed a light on satellite glia population in the cortex and imply their roles in the functional recovery after ischemic injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.