Neurogenesis in the dentate gyrus of the adult mammalian hippocampus has been proven in a series of studies, but the differentiation process toward newborn neurons is still unclear. In addition to the immunohistochemical study, electrophysiological membrane recordings of precursor cells could provide an alternative view to address this differentiation process. In this study, we performed green fluorescent protein (GFP)-guided selective recordings of nestin-positive progenitor cells in adult dentate gyrus by means of nestin-promoter GFP transgenic mice, because nestin is a typical marker for precursor cells in the adult dentate gyrus. The patch-clamp recordings clearly demonstrated the presence of two distinct subpopulations (type I and type II) of nestin-positive cells. Type I cells had a lower input resistance value of 77.1 M(Omega) (geometric mean), and their radial processes were stained with anti-glial fibrillary acidic protein antibody. On the other hand, type II nestin-positive cells had a higher input resistance value of 2110 MOmega and expressed voltage-dependent sodium current. In most cases, type II cells were stained with anti-polysialylated neural cell adhesion molecule. Taken together with a bromodeoxyuridine pulse-chase analysis, our results may reflect a rapid and dynamic cell conversion of nestin-positive progenitor, from type I to type II, at an early stage of adult neurogenesis in the dentate gyrus.
Neurons in the latero-capsular part of the central nucleus of the amygdala (CeA), a region now called the "nociceptive amygdala", receive predominantly nociceptive information from the dorsal horn through afferent pathways relayed at the nucleus parabrachialis (PB). Excitatory synaptic transmission between the PB afferents and these neurons is reported to become potentiated within a few hours of the establishment of arthritic or visceral pain, making it a possible mechanism linking chronic pain and unpleasant negative emotional experiences. However, it remains unknown whether such synaptic potentiation is consolidated or becomes adaptively extinct in the longer-lasting form of chronic pain, such as neuropathic pain, an as yet serious and frequent type of pain of important clinical concern. To address this issue, we recorded postsynaptic currents in CeA neurons evoked by PB tract stimulation in acute brain slices from young rats with neuropathic pain, as evaluated by tactile allodynic responses, following unilateral spinal nerve ligature made 1 week earlier. CeA neurons contralateral to the nerve ligation showed significantly larger-amplitude postsynaptic currents than those in the ipsilateral CeA and sham- and non-operated groups. The degree of synaptic potentiation, as compared between two sides, was positively correlated to that of tactile allodynia responses. In addition, blockade of NMDA receptors did not affect this potentiation. We conclude that potentiation of the PB-CeA synapse is consolidated in long-lasting neuropathic pain but that this potentiation results from a molecular mechanism distinct from that in arthritic and visceral pain.
We have shown previously that the inactivation of the zinc finger gene Krox-20 affects hindbrain segmentation, resulting in the elimination of rhombomeres 3 and 5. We demonstrate here that Krox-20 homozygous mutant mice exhibit abnormally slow respiratory and jaw opening rhythms, indicating that a modification of hindbrain segmentation influences the function of neuronal networks after birth. Central neuronal networks that control respiratory frequency are made predominantly depressant by the elimination of a previously undescribed rhythm-promoting system. Recordings of rhythmic activity from the isolated hindbrain following progressive tissue transections indicate that the reorganization takes place in the caudal pontine reticular formation. The newborn (PO) Krox-20-/- mice, in which apneas are ten times longer than in wild-type animals, may be a valuable model for the study of life-threatening apneas during early infancy.
Memory is thought to be stored in the brain as an ensemble of cells activated during learning. Although optical stimulation of a cell ensemble triggers the retrieval of the corresponding memory, it is unclear how the association of information occurs at the cell ensemble level. Using optogenetic stimulation without any sensory input in mice, we found that an artificial association between stored, non-related contextual, and fear information was generated through the synchronous activation of distinct cell ensembles corresponding to the stored information. This artificial association shared characteristics with physiologically associated memories, such as N-methyl-D-aspartate receptor activity and protein synthesis dependence. These findings suggest that the association of information is achieved through the synchronous activity of distinct cell ensembles. This mechanism may underlie memory updating by incorporating novel information into pre-existing networks to form qualitatively new memories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.