A numerical prediction method of cavitation erosion is proposed. In this method, the analysis of bubbles in cavitating flows is performed and the intensity of cavitation erosion is evaluated by the impact pressure induced by spherical bubble collapse. In the present study, two-dimensional cavitating flow around the Clark Y 11.7 % hydrofoil is used to examine the proposed numerical prediction method. The proposed numerical method predicts that the intensities of cavitation erosion in noncavitating, attached cavitating and pseudo-supercavitating flows are far weaker than the intensity of cavitation erosion in a transient cavitating flow, and the intensity in the vicinity of the sheet cavity termination is high. These results correspond well to experimental results, and it is confirmed that systematic erosion characteristics are generally captured by this method. Furthermore, the velocity dependence of cavitation erosion is examined, and it is found that the exponent n in the relation between the intensity I and main flow velocity U in (I ∝ U n in) becomes large when the bubble radius is large and ranges between 4.3 and 7.0 in the present study. According to the bubble dynamics, the ambient pressure and the rate of increases in pressure increase as the main flow velocity, and the maximum internal pressure increase. Therefore, it is thought that smaller bubbles cause cavitation erosion when the main flow velocity is large.
Clarifying the mechanism of particle removal by megasonic cleaning and multiple-bubble dynamics in megasonic fields is essential for removing contaminant particles during nanodevice cleaning without pattern damage. In particular, the effect of the interaction of multiple bubbles on bubble-collapse behaviour and impulsive pressure induced by bubble collapse should also be discussed. In this study, a compressible locally homogeneous model of a gas–liquid two-phase medium is used to numerically analyse the multiple-bubble behaviour in a megasonic field. The numerical results indicate that, for bubbles with the same equilibrium radius, the natural frequency of the bubble decreases, and bubbles with smaller equilibrium radii resonate with the megasonic wave as the number of bubbles increases. Therefore, the equilibrium radius of bubbles showing maximum wall pressure decreases with an increasing number of bubbles. The increase in bubble number also results in chain collapse, inducing high wall pressure. The effect of the configuration of bubbles is discussed, and the bubble–bubble interaction in the concentric distribution makes a greater contribution to the decrease in the natural frequency of bubbles than the interaction in the straight distribution.
By high speed Liquid Droplet Impingement (LDI) on material, fluid systems are seriously damaged, therefore, it is important for the solution of the erosion problem of fluid systems to consider the effect of material in LDI. In this study, by using an in-house fluid/material two-way coupled method which considers reflection and transmission of pressure, stress and velocity on the fluid/material interface, high-speed LDI on wet/dry material surface is simulated. As a result, in the case of LDI on wet surface, maximum equivalent stress are less than those of dry surface due to damping effect of liquid film. Empirical formula of the damping effect function is formulated with the fluid factors of LDI, which are impingement velocity, droplet diameter and thickness of liquid film on material surface.
Cavitation erosion is a material damage phenomenon caused by the repeated application of impulsive pressure on a material surface induced by bubble collapse, and the establishment of a method by which to numerically predict cavitation erosion is desired. In the present study, a numerical quantitative prediction method of cavitation erosion in a cavitating flow is proposed. In the present method, a one-way coupled analysis of a cavitating flow field based on a gas-liquid two-phase Navier–Stokes equation (Eulerian) and bubbles in the cavitating flow by bubble dynamics (Lagrangian) is used to treat temporally and spatially different scale phenomena, such as the macroscopic phenomenon of a cavitating flow and the microscopic phenomenon of bubble collapse. Impulsive pressures acting on a material surface are evaluated based on the bubble collapse position, time, and intensity, and the erosion rate is quantitatively predicted using an existing material-dependent relationship between the impulsive energy (square of the impulsive force) and the maximum erosion rate. The erosion rate on a NACA0015 hydrofoil surface in an unsteady transient cavitating flow is predicted by the proposed method. The distribution of the predicted erosion rate corresponds qualitatively to the distribution of an experimental surface roughness increment of the same hydrofoil. Furthermore, the predicted erosion rate considering the bubble nuclei distribution is found to be of the same order of magnitude as the actual erosion rate, which indicates that considering bubble nuclei distribution is important for the prediction of cavitation erosion and that the present prediction method is valid to some degree.
Clarification of the mechanism of particle removal by megasonic cleaning and control of cavitation bubbles in the megasonic field are essential for cleaning of nanodevices without pattern damage. Multiple bubble interactions complicate the mechanism of particle removal. Therefore, it is important to understand multiple bubble dynamics to clarify the mechanism of particle removal by megasonic cleaning. In the present study, the dynamics of two bubbles in a megasonic field with several initial radii and initial separation distances were simulated by numerical analysis using a compressible locally homogeneous model of a gas-liquid two-phase medium. The present numerical method simulated the various complex behaviors of two bubbles, which are repulsive motion, coalescence, periodic and stable motion of the separation distance, and bubble breakup. The initial separation distance strongly affected the behavior of the two bubbles because the effect of the secondary pressure induced by the oscillation of one bubble on the other bubble depends on the separation distance. In particular, when the equilibrium radii are larger than the resonant radius and the radius of one or both bubbles is close to the resonant radius, the bubbles can show characteristic behaviors, such as periodic and stable motion of the separation distance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.