We prove a twist formula for the
ε
\varepsilon
-factor of a constructible sheaf on a projective smooth variety over a finite field in terms of characteristic class of the sheaf. This formula is a modified version of the formula conjectured by Kato and Saito in [Ann. of Math. 168 (2008), pp. 33–96].
We give two applications of the twist formula. First, we prove that the characteristic classes of constructible étale sheaves on projective smooth varieties over a finite field are compatible with proper push-forward. Secondly, we show that the two Swan classes in the literature are the same on proper smooth surfaces over a finite field.
Abstract. We give a bound for the order of the local monodromy of a compatible system of l-adic representations, which is independent of l. For the etale cohomology of a variety, the bound depends only on some numerical invariants of varieties.
We prove a twist formula for the ε-factor of a constructible sheaf on a projective smooth variety over a finite field in terms of characteristic class of the sheaf. This formula is a modified version of the formula conjectured by Kato and Saito in [23, Ann. Math., 168 (2008):33-96, Conjecture 4.3.11].We give two applications of the twist formula. Firstly, we prove that the characteristic classes of constructible étale sheaves on projective smooth varieties over a finite field are compatible with proper push-forward. Secondly, we show that the two Swan classes in the literature are the same on proper smooth surfaces over a finite field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.