Despite the fact that many plant-feeding insects are pests, little effort has been made to identify key evolutionary trait transitions that allow taxa to acquire or lose pest status. A large proportion of species in the genus Callosobruchus are economically important pests of stored, dry postharvest beans of the tribe Phaseoleae. However, the evolution of this feeding habit is poorly understood. Here, we present a reconstruction of the phylogeny of the Asian and African Callosobruchus based on three mitochondrial genes, and assess which traits have been associated with the evolutionary origin or loss of ability to reproduce on dry beans. Our phylogenetic analysis showed that species group into the chinensis and the maculatus clades, which are also supported by genital morphology, and an additional paraphyletic group. Ancestral ability to use dry beans has been lost in the chinensis clade but acquired again in C. chinensis. Dry-bean use and host-plant use were both phylogenetically constrained and transitions in the two were significantly correlated. Host shifts from the subtribe Phaseolinae to Cajaninae were more common than the reverse and were more likely in species using young beans. The ability to use dry beans was more likely gained when using Phaseolinae hosts and promoted habitat shifts from tropical to temperate regions. Adaptation to arid climate was also associated with the ability to reproduce on dry beans and on Phaseolinae. Thus, our analysis suggests that physiological adaptations to an arid climate and to Phaseolinae hosts both render beetles predisposed to become pests of cultivated beans.
The genetic diversity of populations of the azuki bean beetle, Callosobruchus chinensis (Linnaeus) from natural, pre-harvest and post-harvest sites, was investigated to understand population structure and gene flow. A 522-bp fragment of the mitochondrial gene COI was sequenced for eight populations of C. chinensis from Japan, Korea and Taiwan collected from different habitats. Six haplotypes were detected, one of which, U1, occurred most frequently and widely. The following hypotheses were tested as a cause of the wide distribution of haplotype U1; (i) topographical separation (by national boundaries), (ii) host plant species, and (iii) habitat type (natural, pre-harvest crop, or post-harvest storage). Categorization of collection sites by country or by host species did not yield differences in the occurrence of haplotype U1, but habitat type did. Populations utilizing cultivated post-harvest hosts that were mass stored were highly likely to be the common haplotype, whereas host plants in natural habitats away from agriculture were utilized by populations with locally characteristic haplotypes. Sampling of commercial beans for quarantine and export purposes indicated that gene flow in C. chinensis was largely unidirectional into Japan at the present time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.