Despite the fact that many plant-feeding insects are pests, little effort has been made to identify key evolutionary trait transitions that allow taxa to acquire or lose pest status. A large proportion of species in the genus Callosobruchus are economically important pests of stored, dry postharvest beans of the tribe Phaseoleae. However, the evolution of this feeding habit is poorly understood. Here, we present a reconstruction of the phylogeny of the Asian and African Callosobruchus based on three mitochondrial genes, and assess which traits have been associated with the evolutionary origin or loss of ability to reproduce on dry beans. Our phylogenetic analysis showed that species group into the chinensis and the maculatus clades, which are also supported by genital morphology, and an additional paraphyletic group. Ancestral ability to use dry beans has been lost in the chinensis clade but acquired again in C. chinensis. Dry-bean use and host-plant use were both phylogenetically constrained and transitions in the two were significantly correlated. Host shifts from the subtribe Phaseolinae to Cajaninae were more common than the reverse and were more likely in species using young beans. The ability to use dry beans was more likely gained when using Phaseolinae hosts and promoted habitat shifts from tropical to temperate regions. Adaptation to arid climate was also associated with the ability to reproduce on dry beans and on Phaseolinae. Thus, our analysis suggests that physiological adaptations to an arid climate and to Phaseolinae hosts both render beetles predisposed to become pests of cultivated beans.
A novel host shift and invaded range of a seed predator, Acanthoscelides macrophthalmus (Coleoptera: Chrysomelidae: Abstract An endophagous seed predator, Acanthoscelides macrophthalmus (Coleoptera: Chrysomelidae: Bruchinae), utilizes Neotropical Leucaena (Fabaceae: Mimosoideae). One of its hosts, Leucaena leucocephala, is a fast-growing nitrogen-fixing tree that serves as a multipurpose beneficial plant but eventually becomes an aggressive invader where it was introduced. Herein, we report A. macrophthalmus invasion of the Far East, South Asian tropics and subtropics (Japanese Pacific Islands, Taiwan, Southern China, Northern Thailand and Southern India). Of other field-collected mimosoid legumes, an introduced tree, Falcataria moluccana, in Taiwan was found to be used by the seed predator. Conversely, our published work review revealed that the seed predator had retained high host specificity to Leucaena species in its native and introduced regions. Acanthoscelides macrophthalmus was able to utilize aphagously postharvest mature seeds for oviposition and larval development, which is a trait of post-dispersal seed predators. We confirmed that A. macrophthalmus that was reared on L. leucocephala was able to utilize F. moluccana as well. Although the relatively high host specificity of the oligophagous beetle is suitable for controlling the weedy L. leucocephala, the potential host range expansion confirmed by this study must be cautioned.
Wolbachia endosymbionts are widespread among insects and other arthropods, often causing cytoplasmic incompatibility and other reproductive phenotypes in their hosts. Recently, possibilities of Wolbachia-mediated pest control and management have been proposed, and the bean beetles of the subfamily Bruchinae are known as serious pests of harvested and stored beans worldwide. Here we investigated Wolbachia infections in bean beetles from the world, representing seven genera, 20 species and 87 populations. Of 20 species examined, Wolbachia infections were detected in four species, Megabruchidius sophorae, Callosobruchus analis, C. latealbus and C. chinensis. Infection frequencies were partial in M. sophorae but perfect in the other species. In addition to C. chinensis described in the previous studies, C. latealbus was infected with two distinct Wolbachia strains. These Wolbachia strains from the bean beetles were phylogenetically not closely related to each other. Among world populations of C. chinensis, some Taiwanese populations on a wild leguminous plant, Rhynchosia minima, exhibited a peculiar Wolbachia infection pattern, suggesting the possibility that these populations comprise a distinct host race or a cryptic species.
The aphid Astegopteryx sp. forms a banana-bunch shaped gall consisting of several subgalls on Styrax benzoides in northern Thailand, and completes its life cycle on the tree, without migrating to secondary hostplants. We found that its soldiers had sclerotic, protruded heads with many spine-like setae, and that several soldiers cooperate to plug the ostiole of the subgall with these heads. Of 173 ostioles examined in the fi eld, 90.8 % were plugged with no space among the guarding soldiers. Many eggs and sexuals were found within subgalls guarded by soldiers, and a number of males were found trying to intrude into these subgalls. However, they were blocked by guarding soldiers, and it was no easy task for them to intrude into subgalls. The same was true for some soldiers that had rushed out of the subgall. Guarding soldiers often prevented outside soldiers from coming back into the subgall. These fi ndings suggest an interesting possibility that guarding soldiers might consequently select still active, reusable soldiers and strong males for sexual females in their subgall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.