IntroductionBacteremia is recognized as a critical condition that influences the outcome of sepsis. Although large-scale surveillance studies of bacterial species causing bacteremia have been published, the pathophysiological differences in bacteremias with different causative bacterial species remain unclear. The objective of the present study is to investigate the differences in pathophysiology and the clinical course of bacteremia caused by different bacterial species.MethodsWe reviewed the medical records of all consecutive patients admitted to the general intensive care unit (ICU) of a university teaching hospital during the eight-year period since introduction of a rapid assay for interleukin (IL)-6 blood level to routine ICU practice in May 2000. White blood cell count, C-reactive protein (CRP), IL-6 blood level, and clinical course were compared among different pathogenic bacterial species.ResultsThe 259 eligible patients, as well as 515 eligible culture-positive blood samples collected from them, were included in this study. CRP, IL-6 blood level, and mortality were significantly higher in the septic shock group (n = 57) than in the sepsis group (n = 127) (P < 0.001). The 515 eligible culture-positive blood samples harbored a total of 593 isolates of microorganisms (Gram-positive, 407; Gram-negative, 176; fungi, 10). The incidence of Gram-negative bacteremia was significantly higher in the septic shock group than in the sepsis group (P < 0.001) and in the severe sepsis group (n = 75, P < 0.01). CRP and IL-6 blood level were significantly higher in Gram-negative bacteremia (n = 176) than in Gram-positive bacteremia (n = 407) (P < 0.001, <0.0005, respectively).ConclusionsThe incidence of Gram-negative bacteremia was significantly higher in bacteremic ICU patients with septic shock than in those with sepsis or severe sepsis. Furthermore, CRP and IL-6 levels were significantly higher in Gram-negative bacteremia than in Gram-positive bacteremia. These findings suggest that differences in host responses and virulence mechanisms of different pathogenic microorganisms should be considered in treatment of bacteremic patients, and that new countermeasures beyond conventional antimicrobial medications are urgently needed.
The American continents are strong geographical barriers to dispersal of Rhizophora, to the point where the Pacific and Atlantic populations are distinct genealogical units, supporting the recommendation to treat the populations as separate conservation and management units. Trans-Pacific propagule dispersal of Rhizophora has occurred; R. mangle and R. samoensis might be the same species and this question should be resolved with further taxonomic study.
Phylogenetic relationships and the spatial genetic structure of a pantropical plant with sea-drifted seeds, Hibiscus tiliaceus L., and its allied species were investigated. The combined distribution range of these species is over almost the entire littoral area of the tropics worldwide, which might result from the dispersal of their sea-drifted seeds and from recurrent speciation in local populations. A phylogenetic tree constructed using the nucleotide sequences of a c. 7500-bp portion of chloroplast DNA suggested the possibility that recurrent speciation from H. tiliaceus has given rise to all of its allied species. Three major sequence haplotypes of H. tiliaceus had wide and overlapping distributions throughout the Pacific, Atlantic and Indian Ocean regions. This distribution pattern was also confirmed by PCR-SSCP (polymerase chain reaction amplification with single-strand conformation polymorphism) and PCR-SSP (PCR amplification with sequence specific primers) analyses performed on more than 1100 samples from 65 populations worldwide. Statistical analysis using F(ST) and analysis of molecular variance did not show significant genetic differentiation among the H. tiliaceus populations in the three oceanic regions. The results reported here suggested substantial gene flow occurred between populations in the different oceanic regions due to sea-drifted seeds. A strong genetic difference between the Pacific and Atlantic populations of Hibiscus pernambucensis Arruda was observed, which indicates that gene flow in this species between the two regions has been prevented. The wide and dominant distribution of a haplotype shared by H. pernambucensis and H. tiliaceus in the Atlantic region suggests significant introgression between the two species in this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.