Recently, we reported that 5,4'-diaminoflavone (1) exhibits potent and specific growth-inhibitory activity against the estrogen receptor (ER)-positive human breast cancer cell line MCF-7. However, when compound 1 was incubated with S-9 mix, its metabolites were observed. Moreover, addition of S-9 mix to the medium caused the drastic decrease in activity of compound 1. Since the 6-, 8-, and 3'-positions were considered to be metabolized oxidatively in vivo from MO calculations, a series of 5,4'-diaminoflavone derivatives substituted at such putative metabolic positions with various functional groups were synthesized aiming at the metabolically stable derivatives. Among them, 5,4'-diamino-6,8,3'-trifluoroflavone (14d) exhibited strong growth-inhibitory activity against MCF-7 cells even in the presence of S-9 mix. Moreover, orally administered compound 14d completely suppressed the growth of MCF-7 inoculated into nude mice, and the effect was more potent than that of compound 1. In addition to ER-positive breast cancer cells, compound 14d exhibited growth-inhibitory activity against a panel of human cancer cell lines including a part of ER-negative breast, endometrial, ovarian, and liver cancers. From these results, fluorine introduction to the putative metabolic positions of compound 1 was elucidated to be effective in the enhancement of the in vivo antitumor activity, probably due to the block of the metabolic deactivation.
A series of 4-hydroxy-3-quinolinecarboxylic acid derivatives (6) and 4-hydroxy-2-oxo-1,2-dihydro-3-quinolinecarboxylic acid derivatives (7) were designed and synthesized as 5-HT3 receptor antagonists. Molecular modeling studies suggested that the 3-carbonyl moiety in 6 was almost coplanar to the plane of an aromatic ring, but in 7 there was a 30 degrees deviation. 4-Hydroxy substitution in quinoline derivatives enhanced affinity for the 5-HT3 receptors, and endo-N-(8-methyl-8-azabicyclo[3.2.1]oct-3-yl)-4-hydroxy-3- quinolinecarboxamide (6f) exhibited the most potent activity in the Bezold-Jarisch (B-J) reflex test (ED50 = 0.1 micrograms/kg, iv) among quinoline derivatives 6. Although 4-hydroxy-2-oxo-1,2-dihydro-3-quinolinecarboxamide derivatives (7a) exhibited higher affinity (e.g., 7d: Ki = 0.48 nM) for the 5-HT3 receptors than ondansetron (Ki = 7.6 nM) or granisetron (Ki = 2.1 nM), these amides showed less potent activity in the B-J reflex test than the reference compounds. Interestingly, the ester derivatives 7c, 7f, and 7h eliminated affinity for the 5-HT3 receptors. These unusual structure-activity relationships and the deviation of the 3-carbonyl moiety from the plane of an aromatic ring suggest that the active conformation of 7a might be different from the proposed one for the preceding 5-HT3 antagonists. Thus, 6f was chosen for further studies. No receptor binding for a variety of ligands was significantly antagonized by 6f. Comparing the ratios of the ED50 value in the B-J reflex test (rat, iv) with the LD50 value in acute lethal toxicity (mouse, iv), 6f was proved to have a 600-fold wider margin of safety than ondansetron. Compound 6f dose-dependently attenuated both the incidence and frequency of emetic episodes induced by cisplatin in the dog (ED50 = 14 micrograms/kg, iv) more potently than ondansetron (ED50 = 210 micrograms/kg, iv). Compound 6f (KF-20170) is now under further investigation as a drug for treating gastrointestinal disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.