In recent years, there has been a great deal of interest in the preparation and application of nanoparticles for cancer therapy. Gold nanoparticles are especially suited to thermal destruction of cancer due to their ease of surface functionalization and photothermal heating ability. Here, we review recent progress in gold nanoparticle-mediated thermal cancer therapies. We begin with an introduction to the properties of gold nanoparticles and heat-generating mechanisms which have been established. The pioneering work in photothermal therapy is discussed along with the effects of photothermal heating on cells in vitro. Additionally, radiofrequency-mediated thermal therapy is reviewed. We focus our discussion on the developments and progress in nanoparticle design for photothermal cancer therapy since 2010. This includes in vitro and in vivo studies and the recent progression of gold nanoparticle photothermal therapy toward clinical cancer treatment.
Plasmonic nanoparticles can strongly interact with adjacent fluorophores, resulting in plasmon-enhanced fluorescence or fluorescence quenching. This dipolar coupling is dependent upon nanoparticle composition, distance between the fluorophore and the plasmonic surface, the transition dipole orientation, and the degree of spectral overlap between the fluorophore's absorbance/emission and the surface plasmon band of the nanoparticles. In this work, we examine the distance and plasmon wavelength dependent fluorescence of an infrared dye ("IRDye") bound to silica-coated gold nanorods. Nanorods with plasmon band maxima ranging from 530 to 850 nm are synthesized and then coated with mesoporous silica shells 11-26 nm thick. IRDye is covalently attached to the nanoparticle surface via a click reaction. Steady-state fluorescence measurements demonstrate plasmon wavelength and silica shell thickness dependent fluorescence emission. Maximum fluorescence intensity, with approximately 10-fold enhancement, is observed with 17 nm shells when the nanorod plasmon maximum is resonant with IRDye absorption. Time-resolved photoluminescence reveals multiexponential decay and a sharp reduction in fluorescence lifetime with decreasing silica shell thickness and when the plasmon maximum is closer to IRDye absorption/emission. Control experiments are carried out to confirm that the observed changes in fluorescence are due to plasmonic interactions, is simply surface attachment. There is no change in fluorescence intensity or lifetime when IRDye is bound to mesoporous silica nanoparticles. In addition, IRDye loading is limited to maintain a distance between dye molecules on the surface to more than 9 nm, well above the Förster radius. This assures minimal dye-dye interactions on the surface of the nanoparticles.
Gold nanorods have garnered a great deal of scientific interest because of their unique optical properties, and they have the potential to greatly impact many areas of science and technology. Understanding the structure and chemical makeup of their surfaces as well as how to tailor them is of paramount importance in the development of their successful applications. This Feature Article reviews the current understanding of the surface chemistry of as-synthesized gold nanorods, methods of tailoring the surface chemistry of gold nanorods with various inorganic and organic coatings/ligands, and the techniques employed to characterize ligands on the surface of gold nanorods as well as the associated measurement challenges. Specifically, we address the challenges of determining how thick the ligand shell is, how many ligands per nanorod are present on the surface, and where the ligands are located in regiospecific and mixed-ligand systems. We conclude with an outlook on the development of the surface chemistry of gold nanorods leading to the development of a synthetic nanoparticle surface chemistry toolbox analogous to that of synthetic organic chemistry and natural product synthesis.
Practical biomedical application of mesoporous silica nanoparticles is limited by poor particle dispersity and stability due to serious irreversible aggregation in biological media. To solve this problem, hydrothermally treated mesoporous silica nanoparticles of small size with dual-organosilane (hydrophilic and hydrophobic silane) surface modification have been synthesized. These highly organomodified mesoporous silica nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, N(2) adsorption-desorption, dynamic light scattering, zeta potential, and solid-state (29)Si NMR, and they prove to be very stable in simulated body fluid at physiological temperature. Additionally, they can be dried to a powdered solid and easily redispersed in biological media, maintaining their small size for a period of at least 15 days. Furthermore, this preparation method can be expanded to synthesize redispersible fluorescent and magnetic mesoporous silica nanoparticles. The highly stable and redispersible mesoporous silica NPs show minimal toxicity during in vitro cellular assays. Most importantly, two types of doxorubicin, water-soluble doxorubicin and poorly water-soluble doxorubicin, can be loaded into these highly stable mesoporous silica nanoparticles, and these drug-loaded nanoparticles can also be well-redispersed in aqueous solution. Enhanced cytotoxicity to cervical cancer (HeLa) cells was found upon treatment with water-soluble doxorubicin-loaded nanoparticles compared to free water-soluble doxorubicin. These results suggest that highly stable, redispersible, and small mesoporous silica nanoparticles are promising agents for in vivo biomedical applications.
In this work, sub-50 nm pegylated mesoporous silica nanoparticles prepared with hydrothermal treatment are shown to have long-term stability in various media at both room and physiological temperature. Compared to bare mesoporous silica nanoparticles, the highly pegylated mesoporous silica nanoparticles show significantly improved biocompatibility and decreased macrophage uptake, making these nanoparticles viable for in vivo stealth drug delivery applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.