Nanotheranostics have demonstrated the development of advanced platforms that can diagnose brain cancer at early stages, initiate first-line therapy, monitor it, and if needed, rapidly start subsequent treatments. In brain nanotheranostics, therapeutic as well as diagnostic entities are loaded in a single nanoplatform, which can be further developed as a clinical formulation for targeting various modes of brain cancer. In the present review, we concerned about theranostic nanosystems established till now in the research field. These include gold nanoparticles, carbon nanotubes, magnetic nanoparticles, mesoporous silica nanoparticles, quantum dots, polymeric nanoparticles, upconversion nanoparticles, polymeric micelles, solid lipid nanoparticles and dendrimers for the advanced detection and treatment of brain cancer with advanced features. Also, we included the role of three-dimensional models of the BBB and cancer stem cell concept for the advanced characterization of nanotheranostic systems for the unification of diagnosis and treatment of brain cancer. In future, brain nanotheranostics will be able to provide personalized treatment which can make brain cancer even remediable or at least treatable at the primary stages.
c o r r m t e d w i t h d i s t u r b a n c e and when plant parameters I d e n t i f i c a t i o n and control when plant output is vary with time are considered. It is shovn how t h e e r r o r model can be described by a non-hmogeneous d i f f e r e n t i a l equation. Subject to bounded disturbance and parameter v a r i a t i o n and s u f f i c i e n t l y r i c h i n p u t t h e p a r a m e t e r e r r
Aim: This work focused on the development of transferrin-conjugated theranostic liposomes consisting of docetaxel (DXL) and upconversion nanoparticles for the diagnosis and treatment of gliomas. Materials & methods: Upconversion nanoparticles and docetaxel-loaded theranostic liposomes were prepared by a solvent injection method. Formulations were analyzed for physicochemical properties, encapsulation efficiency, drug release, elemental analysis, cytotoxicity and fluorescence. Results: The particle size was around 200 nm with spherical morphology and an encapsulation efficiency of up to 75.93%, was achieved for liposomes with an in vitro drug release of 71.10%. The IC50 values demonstrated enhanced cytotoxicity on C6 glioma cells with targeted liposomes in comparison with nontargeted liposomes. Conclusion: Prepared theranostic liposomes may be promising for clinical validation after an in vitro and in vivo evaluation on cell lines and animals, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.