A simple synthesis method for ultra-thin double-sided cross-dipoles-based Frequency Selective Surfaces (FSS) is presented in this paper. The presented technique is used to design a flexible band-stop FSS for Electromagnetic Interference (EMI) shielding applications operating at 10 GHz. An Equivalent Circuit (EC) combined with a closed-form expression is used to synthesize and validate the response of the proposed element. Further, a parametric study of the proposed FSS aiming to optimize the bandwidth has been presented. The proposed FSS holds similar responses for TE and TM mode of polarization at normal incidence. Further, the conformal behavior of the proposed FSS in comparison with planar FSS is presented and evaluated. The proposed FSS is validated with the full-wave EM solver for simulation, and a prototype is fabricated. The measured results of a proposed FSS are presented and compared to the simulations with good agreement.
In this article, a novel frequency slot-based switchable antenna fabricated on flexible and nonflexible materials is presented for suitable reconfigurable radiations of Bluetooth, WiMAX, and upper WLAN applications. Initially, the performance of this structure was simulated using a CSTTM simulator and evaluated experimentally using a nonflexible FR4 structure. The same antenna was implemented on a flexible (jean) substrate with a relative permittivity of 1.7. The proposed textile antenna prototypes were fabricated by optimal dimensions of an E-shaped slot with a variation on the shape of the ground layer, integrated using a crossed T-shaped strip with ON/OFF switchable state operations. The proposed antenna prototype is compact (20 × 20 mm2), providing switchable radiations with tri bands, has frequencies ranged at 2.36–2.5 GHz for Bluetooth, 3.51–3.79 GHz and 5.47–5.98 GHz for the distinct bands of WiMAX and WLAN, respectively, as well as part of UWB operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.