Big data requires new technologies and tools to process, analyze and interpret the vast amount of high-speed heterogeneous information. A simple mistake in processing software, error in data, and malfunctioning in hardware results in inaccurate analysis, compromised results, and inadequate performance. Thus, measures concerning reliability play an important role in determining the quality of Big data. Literature related to Big data software reliability was critically examined in this paper to investigate: the type of mathematical model developed, the influence of external factors, the type of data sets used, and methods employed to evaluate model parameters while determining the system reliability or component reliability of the software. Since the environmental conditions and input variables differ for each model due to varied platforms it is difficult to analyze which method gives the better prediction using the same set of data. Thus, paper summarizes some of the Big Data techniques and common reliability models and compared them based on interdependencies, estimation function, parameter evaluation method, mean value function, etc. Visualization is also included in the study to represent the Big data reliability distribution, classification, analysis, and technical comparison. This study helps in choosing and developing an appropriate model for the reliability prediction of Big data software.
It is critical for many countries to ensure public safety in detecting and identifying threats in a night, <span lang="EN-US">commercial places, border areas and public places. Majority of past research in this area has focused on the use of image-level categorization and object-level detection techniques. As an X-ray and thermal security image analysis strategy, object separation can considerably improve automatic threat detection when used in conjunction with other techniques. In order to detect possible threats, the effects of introducing segmentation deep learning models into the threat detection pipeline of a large imbalanced X-ray and thermal dataset were investigated. With the purpose of boosting the number of true positives discovered, a faster regional convolutional neural network (R-CNN) model was trained on a balanced dataset to identify probable hazard zones in X-ray and thermal security pictures. In order to get the final results, we combined the two models i.e faster R-CNN with Mask RCNN into a single detection pipeline using the transfer learning technique, which outperforms baseline and end-to-end instance segmentation methods using less number of the practical dataset, with mAPs ranging from 94.88 percent to 91.40 percent helps in detecting the person with guns, knives, pliers to avoid cross border threats.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.