Cryostorage is of immense interest in biomedical research, especially for stem cell-based therapies and fertility preservation. Several protocols have been developed for efficient cryopreservation of cells and tissues, and a combination of dimethyl sulfoxide (DMSO) and fetal bovine serum (FBS) is commonly used. However, there is a need for an alternative to FBS because of ethical reasons, high cost, and risk of contamination with blood-borne diseases. The objective of the present study was to examine the possibility of using buffalo (Bubalus bubalis) ocular fluid (BuOF) to replace FBS in cryomedia. Frozen–thawed cells, which were cryopreserved in a cryomedia with BuOF, were assessed for viability, early and late apoptosis, and proliferation. Three cell lines (CHO, HEK, and C18-4), mouse embryonic stem (mES) cells, and primary cells, such as mouse embryonic fibroblast (MEF) cells, human peripheral blood mononuclear cells (hPBMCs), and mouse bone marrow cells (mBMCs), were cryopreserved in cryomedia containing 10% DMSO (D10) with 20% FBS (D10S20) or D10 with 20% BuOF (D10O20). For all three cell lines and mES cells cryopreserved in either D10S20 or D10O20, thawed cells showed no difference in cell viability or cell recovery. Western blot analysis of frozen–thawed-cultured cells revealed that the expression of Annexin V and proliferating cell nuclear antigen (PCNA) proteins, and the ratio of BAX/BCL2 proteins were similar in all three cell lines, mES cells, and hPBMCs cryopreserved in D10S20 and D10O20. However, initial cell viability, cell recovery after culture, and PCNA expression were significantly lower in MEF cells, and the BAX/BCL2 protein ratio was elevated in mBMCs cryopreserved in D10O20. Biochemical and proteomic analysis of BuOF showed the presence of several components that may have roles in imparting the cryoprotective property of BuOF. These results encourage further research to develop an efficient serum-free cryomedia for several cell types using BuOF.
Background: Osteoporosis (OS) is a pathological condition that makes bones susceptible to fractures by affecting the balance between bone formation and resorption. Recent literature uncovered the possible potential of bioactive compounds with antioxidant mechanisms to counter the issue. Cowpea (CP) isoflavones based on our previous study, vitamin D and natural antioxidant β-carotene for its pleotropic protective effects were assessed alone and in combination. Aim: The study aims to assess the antioxidant and osteoblast differentiation abilities of cowpea isoflavones alone and in combination of vitamin D (VD) and β-carotene (BC) in the human osteosarcoma cell line Saos2. Methods: Saos2 cells were maintained in cell culture conditions and concentrations of CP extract (genistein + daidzein), BC and VD required to increase cell proliferation were estimated using MTT assay. Upon treating cells with the EC50 concentrations, lysates were prepared and levels of alkaline phosphatase (ALP) and osteocalcin were evaluated using ELISA. Oxidative stress parameters and osteoblast differentiation markers were evaluated. Results: CP extract (genistein + daidzein), BC and VD concentrations which enhanced the cell proliferation rate were determined and elevated levels of ALP and osteocalcin upon treatment was observed. Anti-oxidant stress parameters studied showed an increase in cells upon treatment compared to control. Significant alterations in levels of protein involved in osteoblast differentiation are observed upon treatment. Conclusion: Cowpea isoflavones has shown a significant activity against OS by elevating antioxidant parameters and inducing osteoblast differentiation in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.