The discovery that transient elevations of calcium concentration occur in astrocytes, and release 'gliotransmitters' which act on neurons and vascular smooth muscle, led to the idea that astrocytes are powerful regulators of neuronal spiking, synaptic plasticity and brain blood flow. These findings were challenged by a second wave of reports that astrocyte calcium transients did not mediate functions attributed to gliotransmitters and were too slow to generate blood flow increases. Remarkably, the tide has now turned again: the most important calcium transients occur in fine astrocyte processes not resolved in earlier studies, and new mechanisms have been discovered by which astrocyte [Ca(2+)]i is raised and exerts its effects. Here we review how this third wave of discoveries has changed our understanding of astrocyte calcium signaling and its consequences for neuronal function.
We show that the G protein‐coupled receptor GPR37‐like 1 (GPR37L1) is expressed in most astrocytes and some oligodendrocyte precursors in the mouse central nervous system. This contrasts with GPR37, which is mainly in mature oligodendrocytes. Comparison of wild type and Gpr37l1–/– mice showed that loss of GPR37L1 did not affect the input resistance or resting potential of astrocytes or neurons in the hippocampus. However, GPR37L1‐mediated signalling inhibited astrocyte glutamate transporters and – surprisingly, given its lack of expression in neurons – reduced neuronal NMDA receptor (NMDAR) activity during prolonged activation of the receptors as occurs in ischemia. This effect on NMDAR signalling was not mediated by a change in the release of D‐serine or TNF‐α, two astrocyte‐derived agents known to modulate NMDAR function. After middle cerebral artery occlusion, Gpr37l1 expression was increased around the lesion. Neuronal death was increased by ∼40% in Gpr37l1–/– brain compared to wild type in an in vitro model of ischemia. Thus, GPR37L1 protects neurons during ischemia, presumably by modulating extracellular glutamate concentration and NMDAR activation.
Prior expectations influence the way incoming stimuli are processed. A standard, validated way of manipulating prior expectations is to bias participants to perceive a stimulus by instructing them to look out for this type of stimulus. Here, we investigated the influence of prior expectations on the processing of incoming stimuli (emotional faces) in adolescence. Using functional magnetic resonance imaging, we assessed activity and functional connectivity in 13 adolescents and 13 healthy adults (matched for gender and intelligence quotient), while they were presented with sequences of emotional faces (happy, fearful, or angry). A specific instruction at the start of each sequence instructed the participants to look out for fearful or angry faces in the subsequent sequence. Both groups responded more accurately and with shorter reaction times (RTs) to faces that were congruent with the instruction. For anger, this bias was lower in the adolescents (for RTs), and adults demonstrated greater activation than adolescents in the ventro-medial prefrontal cortex (vMPFC) and greater functional connectivity between the vMPFC and the thalamus when the face was congruent with the instruction. Our results demonstrate that the influence of prior expectations (in the form of an instruction) on the subsequent processing of face stimuli is still developing in the adolescent brain.
Adolescents have been shown to be particularly sensitive to peer influence. However, the data supporting these findings have been mostly limited to the impact of peers on risk-taking behaviours. Here, we investigated the influence of peers on performance of a high-level cognitive task (relational reasoning) during adolescence. We further assessed whether this effect on performance was dependent on the identity of the audience, either a friend (peer) or the experimenter (non-peer). We tested 24 younger adolescent (10.6–14.2 years), 20 older adolescent (14.9–17.8 years) and 20 adult (21.8–34.9 years) female participants. The presence of an audience affected adolescent, but not adult, relational reasoning performance. This audience effect on adolescent performance was influenced by the participants' age, task difficulty and the identity of the audience. These findings may have implications for education, where adolescents often do classwork or homework in the presence of others.
Rostrolateral prefrontal cortex (RLPFC) is part of a frontoparietal network of regions involved in relational reasoning, the mental process of working with relationships between multiple mental representations. RLPFC has shown functional and structural changes with age, with increasing specificity of left RLPFC activation for relational integration during development. Here, we used dynamic causal modelling (DCM) to investigate changes in effective connectivity during a relational reasoning task through the transition from adolescence into adulthood. We examined fMRI data of 37 healthy female participants (11-30 years old) performing a relational reasoning paradigm.Comparing relational integration to the manipulation of single relations revealed activation in five regions: the RLPFC, anterior insula, dorsolateral PFC, inferior parietal lobe, and medial superior frontal gyrus. We used a new exhaustive search approach and identified a full DCM model, which included all reciprocal connections between the five clusters in the left hemisphere, as the optimal model. In line with previous resting state fMRI results, we showed distinct developmental effects on the strength of long-range frontoparietal vs. frontoinsular short-range fixed connections. The modulatory connections associated with relational integration increased with age. Gray matter volume in left RLPFC, which decreased with age, partly accounted for changes in fixed PFC connectivity. Finally, improvements in relational integration performance were associated with greater modulatory and weaker fixed PFC connectivity. This pattern provides further evidence of increasing specificity of left PFC function for relational integration compared to the manipulation of single relations, and demonstrates an association between effective connectivity and performance changes during development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.