Desorption electrospray ionization (DESI) mass spectrometry is used to detect trace amounts of explosives present on a variety of ambient surfaces in 5-second analysis times without any sample preparation.
Desorption electrospray ionization (DESI), an ambient mass spectrometry technique, is used for trace detection of the explosives trinitrohexahydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 2,4,6-trinitrotoluene (TNT), Pentaerythritol tetranitrate (PETN), and their plastic compositions (Composition C-4, Semtex-H, Detasheet) directly from a wide variety of surfaces (metal, plastic, paper, polymer) without sample preparation or pretreatment. Analysis of the explosives is performed under ambient conditions from virtually any surface in very short times (<5 s) including confirmatory tandem mass spectrometry (MS/MS) experiments, while retaining the sensitivity and specificity that mass spectrometry offers. Increased selectivity is obtained both by MS/MS and by performing additional experiments in which additives are included in the spray solvent. These reactive DESI experiments (reactions accompanying desorption) produce such ions as the chloride and trifluoroacetate adducts of RDX and HMX or the Meisenheimer complex of TNT. Desorption atmospheric pressure chemical ionization, a variant of DESI that uses gas-phase ions generated by atmospheric pressure corona discharges of toluene or other organic compounds, provides evidence for a heterogeneous-phase (gaseous ion/absorbed analyte) charge-transfer mechanism of DESI ionization in the case of explosives. Plastic explosives on surfaces were analyzed directly as fingerprints, without sample preparation, to test DESI as a possible method for in situ detection of explosives-contaminated surfaces. DESI also allowed detection of explosives in complex matrixes, including lubricants, household cleaners, vinegar, and diesel fuel. Absolute limits of detection for the neat explosives were subnanogram in all cases and subpicogram in the case of TNT. The DESI response was linear over 3 orders of magnitude for TNT. Quantification of RDX on paper gave a precision (RSD) of 2.3%. Pure water could be used as the spray solution for DESI, and it showed ionization efficiencies for RDX in the negative ion mode similar to that given by methanol/water. DESI represents a simple and rapid way to detect explosives in situ with high sensitivity and specificity and is especially useful when they are present in complex mixtures or in trace amounts on ordinary environmental surfaces.
Desorption electrospray ionization (DESI) allows mass spectrometry to be used for on-line high-throughput monitoring of pharmaceutical samples in the ambient environment, without prior sample preparation. Positive and negative ion DESI are used to characterize the active ingredients in pharmaceutical samples formulated as tablets, ointments, and liquids. Compounds of a wide variety of chemical types are detected in these complex matrices. The effects on analytical performance of operating parameters, including the electrospray high voltage, heated capillary temperature, solvent infusion rate, and solvent composition, are evaluated and optimized. In addition to experiments in which a simple solvent is sprayed onto the solid analyte samples, reactive desorption is performed by adding reagents to the solvent spray to generate particularly stable or characteristic ions with the analytes of interest. A variable-speed moving belt was built for high-throughput sampling and used to provide rapid qualitative and semiquantitative information on drug constituents in tablets. Sampling rates as high as 3 samples/s are achieved in the ambient environment. Relative standard deviations of the relative ion abundances for major components in the mass spectra are in the range of 2-8%. Impurities and components present at levels as low as approximately 0.1% are identified and carryover effects are minimized in high-throughput on-line analysis of pharmaceutical samples.
Desorption electrospray ionization (DESI) mass spectrometry is applied to the in situ detection of alkaloids in the tissue of poison hemlock (Conium maculatum), jimsonweed (Datura stramonium) and deadly nightshade (Atropa belladonna). The experiment is carried out by electrospraying micro-droplets of solvent onto native or freshly-cut plant tissue surfaces. No sample preparation is required and the mass spectra are recorded under ambient conditions, in times of a few seconds. The impact of the sprayed droplets on the surface produces gaseous ions from organic compounds originally present in the plant tissue. The effects of operating parameters, including the electrospray high voltage, heated capillary temperature, the solvent infusion rate and the carrier gas pressure on analytical performance are evaluated and optimized. Different types of plant material are analyzed including seeds, stems, leaves, roots and flowers. All the previously reported alkaloids have been detected in C. maculatum, while fifteen out of nineteen known alkaloids for D. stramonium and the principal alkaloids of A. belladonna were also identified. All identifications were confirmed by tandem mass spectrometry. Results obtained show similar mass spectra, number of alkaloids, and signal intensities to those obtained when extraction and separation processes are performed prior to mass spectrometric analysis. Evidence is provided that DESI ionization occurs by both a gas-phase ionization process and by a droplet pick-up mechanism. Quantitative precision of DESI is compared with conventional electrospray ionization mass spectrometry (after sample workup) and the RSD values for the same set of 25 dicotyledonous C. maculatum seeds (one half of each seed analyzed by ESI and the other by DESI) are 9.8% and 5.2%, respectively.
Urine metabolic profiles of patients with inborn errors of metabolism were examined with nuclear magnetic resonance (NMR) and desorption electrospray ionization mass spectrometry (DESI-MS) methods. Spectra obtained from the study of urine samples from individual patients with argininosuccinic aciduria (ASA), classic homocystinuria (HCY), classic methylmalonic acidemia (MMA), maple syrup urine disease (MSUD), phenylketonuria (PKU) and type II tyrosinemia (TYRO) were compared with six control patient urine samples using principal component analysis (PCA). Target molecule spectra were identified from the loading plots of PCA output and compared with known metabolic profiles from the literature and metabolite databases. Results obtained from the two techniques were then correlated to obtain a common list of molecules associated with the different diseases and metabolic pathways. The combined approach discussed here may prove useful in the rapid screening of biological fluids from sick patients and may help to improve the understanding of these rare diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.