Summary To manipulate enzymatic hydrolysis of tilapia (Oreochromis niloticus) muscle protein for production of bioactive peptides, its reaction kinetics was intensively studied. The study showed that the production of peptides with different bioactive properties including antioxidant activity, angiotensin‐I‐converting enzyme (ACE) inhibition and Ca‐binding property and their kinetics were affected by the degree of hydrolysis and substrate concentration. A comparative study on reaction kinetics found that the kinetic parameters for the production of each bioactive peptide are unique, that is, the maximum initial velocity, Vmax, for hydrolysis of protein was as high as 1.07 mg mL−1 min−1, but that for the production of peptides with antioxidant activity and Ca‐binding property were very low, range of 7.14–66.7 μg mL−1 min−1, and that for the production of peptides with ACE inhibitory activity was the lowest, at 2.57 μg mL−1 min−1. This knowledge of reaction kinetics of protein hydrolysis would be useful for manipulating and optimising the production of peptides with desired bioactive properties.
The unripe pulp, inner peel and seed of durian were used in this study. These are generally not considered edible and must be disposed of as waste. However, they are good sources of bioactive compounds. Flour extracts from the unripe pulp, inner peel, and seed of two durian (Durio zibethinus Murr.) varieties, namely, Monthong and Chanee, were analyzed chemically to determine their total phenolic content (TPC), antioxidant, and anti-inflammatory capacities. Chanee pulp (CPu) contained a higher TPC (5285.37 ± 517.65 mg GAE/g) than Monthong pulp (MPu), Monthong peel (MP), Monthong seed (MS), Chanee peel (CP) and Chanee seed (CS) (p = 0.0027, 0.0042, 0.0229, 0.0069 and 0.36), respectively. The antioxidant activity of each durian extract was determined against ABTS, nitric oxide, superoxide, hydroxyl, and metal ions. The results indicated that the pulp, inner peel and seed of these durian varieties had antioxidant capacities. Murine Raw 264.7 macrophages were used to determine the cytotoxicity of the flour extracts. The extract of CS flour had the lowest cytotoxicity followed by MP, CPu, CP, MPu and MS (p = 0.5926, 0.44, 0.3191, 0.1471 and 0.0014), respectively. The anti-inflammatory activity was tested by anti-nitric oxide (NO) production in lipopolysaccharide (LPS) stimulated cells by co-treating the Raw 264.7 cells with each durian flour extract and LPS. The extract of MP flour had the lowest IC50 against NO production, indicating the highest anti-NO production activity followed by CS, CPu, MPu, CP and MS (p = 0.7473, 0.0104, < 0.0001, 0.0002 and < 0.0001, respectively). The information obtained in this study is useful for researchers to explore more durian varieties in Southeast Asia to find bioactive compounds that might be novel nutraceuticals for antioxidant, anti-inflammation and therapeutic functional food.
Edible insects have become increasingly popular in Thailand as a nutritious and appealing alternative food source. As the edible insect industry in the country expands rapidly, efforts are being made to transform it into an economically viable sector with substantial commercial potential. Some of the most consumed and sold edible insects in Thailand include locusts, palm weevils, silkworm pupae, bamboo caterpillars, crickets, red ants, and giant water bugs. With its strong growth, Thailand has the potential to emerge as a global leader in the production and promotion of edible insect products. Edible insects are an excellent source of protein, fat, vitamins, and minerals. In particular, crickets and grasshoppers are protein-rich, with the average protein content of edible insects ranging from 35 to 60 g/100 g of dry weight or 10 to 25 g/100 g of fresh weight. This surpasses the protein content of many plant-based sources. However, the hard exoskeleton of insects, which is high in chitin, can make them difficult to digest. In addition to their nutritional value, edible insects contain biologically active compounds that offer various health benefits. These include antibacterial, anti-inflammatory, anti-collagenase, elastase-inhibitory, α-glucosidase-inhibitory, pancreatic lipase-inhibitory, antidiabetic/insulin-like/insulin-like peptide (ApILP), antidiabetic, anti-aging, and immune-enhancing properties. The Thai food industry can process and utilize edible insects in diverse ways, such as low-temperature processing, including refrigeration and freezing, traditional processing techniques, and incorporating insects into products, such as flour, protein, oil, and canned food. This review offers a comprehensive overview of the status, functional properties, processing, and utilization of edible insects in Thailand, and it serves as a valuable resource for those interested in edible insects and provides guidance for their application in various fields.
The objective of this study was to evaluate the impact of varying concentrations of longkong pericarp extract (LPE) on the physicochemical properties of alginate-based edible nanoparticle coatings (NP-ALG) on shrimp. For developing the nanoparticles, the alginate coating emulsion with different LPE concentrations (0.5, 1.0, and 1.5%) was ultrasonicated at 210 W with a frequency of 20 kHz for 10 min and a pulse duration of 1s on and 4 off. After that, the coating emulsion was separated into four treatments (T): T1: Coating solution containing basic ALG composition and without the addition of LPE or ultrasonication treatment; T2: ALG coating solution converted into nano-sized particles with ultrasonication and containing 0.5% LPE; T3: ALG coating solution converted into nano-sized particles with ultrasonication and containing 1.0% LPE; T4: ALG coating solution converted into nano-sized particles with ultrasonication and containing 1.5% LPE. A control (C) was also used, where distilled water was used instead of ALG coating. Before coating the shrimp, all the coating materials were tested for pH, viscosity, turbidity, whiteness index, particle size, and polydispersity index. The control samples had the highest pH and whiteness index and was followed by the lowest viscosity and turbidity (p < 0.05). Among the T1–T4 coating materials, T4 coating had higher turbidity, particle size, polydispersity index, but lower pH, viscosity, and whiteness index (p < 0.05). To study the quality and shelf-life of the shrimp, all coated shrimp samples were refrigerated at 4 °C for a period of 14 days. At 2-day intervals, physiochemical and microbial analyses were performed. The coated shrimp also had a lower increase in pH and weight loss over the storage period (p < 0.05). Coatings containing 1.5% LPE significantly reduced the polyphenol oxidase activity in the shrimp (p > 0.05). The addition of LPE to NP-ALG coatings demonstrated dose-dependent antioxidant activity against protein and lipid oxidation. The highest LPE concentration (1.5%) led to increased total and reactive sulfhydryl content, along with a significant decrease in carbonyl content, peroxide value, thiobarbituric acid reactive substances, p-anisidine, and totox values at the end of the storage period (p < 0.05). Additionally, NP-ALG-LPE coated shrimp samples exhibited an excellent antimicrobial property and significantly inhibited the growth of total viable count, lactic acid bacteria, Enterobacteriaceae, and psychotropic bacteria during storage. These results suggested that NP-ALG-LPE 1.5% coatings effectively maintained the quality as well as extended the shelf-life of shrimp during 14 days of refrigerated storage. Therefore, the use of nanoparticle-based LPE edible coating could be a new and effective way to maintain the quality of shrimp during prolonged storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.