CD1 proteins present self and foreign lipid antigens to activate specific T cells in the mammalian immune system. These T cells play an important role in controlling autoimmune diseases, suppression of tumor growth and host defense against invading pathogens. Humans utilize five CD1 isoforms, while only two exist in birds. Unlike mammals CD1, the structure of chicken CD1-2, showed a primitive lipid-binding groove, suggesting that chicken may only recognize single chain lipids. In contrast, the crystal structure of the second chicken CD1 isoform, chCD1-1, reported here at 2.2 Å resolution, reveals an elaborated binding groove with a dual-pocket dual-cleft architecture. The A′ and F′ deep pockets are separated from each other, but each is connected to a hydrophobic surface cleft, which may participate in lipids binding. The long endogenous ligand found inside the binding groove of chCD1-1, together with binding data on various glycolipids and mycolic acid, strongly suggest that the unique avian CD1 family could bind long dual- and possibly tri-acyl chain lipids.
To study biological factors related to protection against HIV-1 infection in Cambodia, we recruited 48 partners of HIV-1-infected patients who remained uninfected (exposed uninfected individuals, EUs) despite unprotected sexual intercourse for more than 1 year and 49 unexposed controls (UCs). HIV-1-specific antibodies (IgA anti-gp41 and IgG anti-CD4-gp120 complex), T-cell responses, and cellular factors that may be involved in protection (peripheral blood mononuclear cell [PBMC] resistance to HIV-1 infection and beta-chemokine production) were evaluated. Anti-HIV-1 antibodies were higher in EUs than those in UCs (P = 0.01 and P = 0.04 for anti-gp41 and anti-CD4-gp120, respectively). We observed a decreased susceptibility to a primary Cambodian isolate, HIV-1KH019, in EU PBMCs as compared with UC PBMCs (P = 0.03). A weak T-cell response to one pool of HIV-1 Gag peptides was found by ELISpot in 1 of 19 EUs. Whereas T-cell specific immunity was not associated to protection, our results suggest that HIV-specific humoral immunity and reduced cell susceptibility to infection may contribute to protection against HIV-1 infection in Cambodian EUs.
Mycobacterium tuberculosis (MTb) is the leading cause of death in the setting of AIDS. MTb enhances the pathogenicity and accelerates the course of HIV disease and, furthermore, infection with HIV-1 increases the risk of reactivation or reinfection with MTb. In this study, we show that host-specific recall responses to one pathogen, MTb, has a direct effect upon the regulation of a second pathogen, HIV-1. Using cells from immunocompetent former tuberculosis (TB) patients who displayed either a persistently positive (responsive) or negative (anergic), delayed-type hypersensitivity (DTH) reaction to intradermal injection of purified protein derivative (PPD), we investigated the effect of recall Ags to MTb upon the replication of HIV-1 primary isolates in vitro. We show that HIV-1 replication of a T cell-tropic isolate was significantly impaired in MTb-stimulated PBMC from PPD-anergic donors. Furthermore, these donors displayed a significant increase in CD8+ T cells and IL-10 levels and lower levels of IL-2 and TNF-α relative to PPD-responsive donors in response to PPD stimulation. Strikingly, CD8+ T cell depletion and blocking of IL-10 significantly increased HIV-1 replication in these PPD-anergic donors, indicating that an immunosuppressive response to MTb recall Ags inhibits HIV-1 replication in PPD-anergic individuals. Therefore, immunotherapeutic approaches aimed at recapitulating Ag-specific MTb anergy in vivo could result in novel and effective approaches to inhibit HIV-1 disease progression in MTb/HIV-1 coinfection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.