BACKGROUND AND PURPOSEHigh-throughput screening of compound libraries using genetically encoded fluorescent biosensors has identified several secondgeneration. low MW inhibitors of the calcium-activated chloride channel anoctamin 1 (CaCC/Ano1). Here we have (i) examined the effects of these Ano1 inhibitors on gastric and intestinal pacemaker activity; (ii) compared the effects of these inhibitors with those of the more classical CaCC inhibitor, 5-nitro-2-(3-phenylpropylalanine) benzoate (NPPB); (ii) examined the mode of action of these compounds on the waveform of pacemaker activity; and (iii) compared differences in the sensitivity between gastric and intestinal pacemaker activity to the Ano1 inhibitors. EXPERIMENTAL APPROACHUsing intracellular microelectrode recordings of gastric and intestinal muscle preparations from C57BL/6 mice, the dosedependent effects of Ano1 inhibitors were examined on spontaneous electrical slow waves. KEY RESULTSThe efficacy of second-generation Ano1 inhibitors on gastric and intestinal pacemaker activity differed significantly. Antral slow waves were more sensitive to these inhibitors than intestinal slow waves. CaCC inh -A01 and benzbromarone were the most potent at inhibiting slow waves in both muscle preparations and more potent than NPPB. Dichlorophene and hexachlorophene were equally potent at inhibiting slow waves. Surprisingly, slow waves were relatively insensitive to T16A inh -A01 in both preparations. CONCLUSIONS AND IMPLICATIONSWe have identified several second-generation Ano1 inhibitors, blocking gastric and intestinal pacemaker activity. Different sensitivities to Ano1 inhibitors between stomach and intestine suggest the possibility of different splice variants in these two organs or the involvement of other conductances in the generation and propagation of pacemaker activity in these tissues.
Background Resistance to chemotherapy is the most common cause of treatment failure in acute myeloid leukemia (AML) and the drug efflux pump ABCB1 is a critical mediator. Recent studies have identified promoter translocations as common drivers of high ABCB1 expression in recurrent, chemotherapy-treated high-grade serous ovarian cancer (HGSC) and breast cancer. These fusions place ABCB1 under the control of a strong promoter while leaving its open reading frame intact. The mechanisms controlling high ABCB1 expression in AML are largely unknown. We therefore established an experimental system and analysis pipeline to determine whether promoter translocations account for high ABCB1 expression in cases of relapsed human AML. Methods The human AML cell line THP-1 was used to create a model of chemotherapy resistance in which ABCB1 expression was driven by a promoter fusion. The THP-1 model was used to establish a targeted nanopore long-read sequencing approach that was then applied to cases of ABCB1high HGSC and AML. H3K27Ac ChIP sequencing was used to assess the activity of native promoters in cases of ABCB1high AML. Results Prolonged in vitro daunorubicin exposure induced activating ABCB1 promoter translocations in human THP-1 AML cells, similar to those recently described in recurrent high-grade serous ovarian and breast cancers. Targeted nanopore sequencing proved an efficient method for identifying ABCB1 structural variants in THP-1 AML cells and HGSC; the promoter translocations identified in HGSC were both previously described and novel. In contrast, activating ABCB1 promoter translocations were not identified in ABCB1high AML; instead H3K27Ac ChIP sequencing demonstrated active native promoters in all cases studied. Conclusions Despite frequent high level expression of ABCB1 in relapsed primary AML we found no evidence of ABCB1 translocations and instead confirmed high-level activity of native ABCB1 promoters, consistent with endogenous regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.