Abstract-Recently, there has been a substantial growth in mobile data traffic due to the widespread of data hungry devices such as smart handsets and laptops. This has encouraged researchers and system designers to develop a further efficient network design. The objective of this paper is to overview the technologies that can support multi Gbps for future Fifth Generation (5G) network. This paper presents many challenges, problems and questions that arise in research and design stage. It concluded that the anticipated high traffic demands and low latency requirements stemmed from the Internet of Things (IoT) and Machine to Machine Communications (M2M) can only be met with radical changes to the network paradigm such as harnessing millimetre-wave band in dense deployment of smallcells. Future wireless system will include all types of smart features and applications that make 5G the most intelligent and dominant wireless technology.
In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5 th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systemS in the 60GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of site. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.