Matching the global food demand by 2050 and to ensure the stability of food security in over than 99 countries, it is necessary to scale up the production of food such as sorghum, wheat, rice, maize and sugarcane which are however natural hosts of Cochliobolus species. Cochliobolus species major epidemics such as the Great Bengal famine, Southern corn leaf blight, and Northern leaf spot blight were associated with substantial economic losses in the past decades. Thus, there is an urgent need to establish a specific coordinated global surveillance program for the migration of invasive Cochliobolus species, planning contextual control programs engaging all agricultural stakeholders and information sharing in real time for prevention of disastrous Cochliobolus disease outbreak effects. We discuss pertinent outcome of interactions of cash crops with Cochliobolus species having devastating impact on the livelihood of farmers and food security. While post-genomic era elucidated prominent differences among Cochliobolus heterostrophus, C. carbonum, C. victoriae, C. lunatus and C. miyabeanus, their destructive potentials and implications in food losses remained unearthed. Intriguingly, the annual colossal losses caused by Cochliobolus species in the production perspective of sorghum, wheat, rice, maize, cassava and soybean is estimated over 10 billion USD worldwide. This paper provides a comprehensive analysis of the invasive Cochliobolus species distribution and diversity, evolving pathogenicity, persistent diseases, threats and epidemics, consequences on food crops production and increasing global food insecurity issues.
Cold-stress in Escherichia coli induces de novo synthesis of translation initiation factors IF1, IF2 and IF3 while ribosome synthesis and assembly slow down. Consequently, the IFs/ribosome stoichiometric ratio increases about 3-fold during the first hours of cold adaptation. The IF1 and IF3 increase plays a role in translation regulation at low temperature (cold-shock-induced translational bias) but so far no specific role could be attributed to the extra copies of IF2. In this work, we show that the extra-copies of IF2 made after cold stress are associated with immature ribosomal subunits together with at least another nine proteins involved in assembly and/or maturation of ribosomal subunits. This finding, coupled with evidence that IF2 is endowed with GTPase-associated chaperone activity that promotes refolding of denatured GFP, and the finding that two cold-sensitive IF2 mutations cause the accumulation of immature ribosomal particles, indicate that IF2 is yet another GTPase protein that participates in ribosome assembly/maturation, especially at low temperatures. Overall, these findings are instrumental in redefining the functional role of IF2, which cannot be regarded as being restricted to its well documented functions in translation initiation of bacterial mRNA.
Background Aldehyde dehydrogenases are vital for aerobic hydrocarbon degradation and is involved in the last step of catalysing the oxidation of aldehydes to carboxylic acids. With the global increase in hydrocarbon pollution of different environments, these enzymes have the potential to be used in enzymatic bioremediation applications. Results Fifteen fosmid clones with hydrocarbon degrading potential were functionally screened to identify dehydrogenase enzymes. Accordingly, the fosmid insert of the positive clones were sequenced using PacBio next generation sequencing platform and de novo assembled using CLC Genomic Work Bench. The 1233 bp long open reading frame (ORF) for DHY-SC-VUT5 was found to share a protein sequence similarity of 97.7% to short-chain dehydrogenase from E. coli. The 1470 bp long ORF for DHY-G-VUT7 was found to share a protein sequence similarity of 23.9% to glycine dehydrogenase (decarboxylating) (EC 1.4.4.2) from Caulobacter vibrioides (strain NA1000 / CB15N) (Caulobacter crescentus). The in silico analyses and blast against UNIPROT protein database with the stated similarity show that the two dehydrogenases are novel. Biochemical characterization revealed, that the highest relative activity was observed at substrate concentrations of 150 mM and 50 mM for DHY-SC-VUT5 and DHY-G-VUT7, respectively. The Km values were found to be 13.77 mM with a Vmax of 0.009135 μmol.min− 1 and 2.832 mM with a Vmax of 0.005886 μmol.min− 1 for DHY-SC-VUT5 and DHY-G-VUT7, respectively. Thus, a potent and efficient enzyme for alkyl aldehyde conversion to carboxylic acid. Conclusion The microorganisms overexpressing the novel aldehyde dehydrogenases could be used to make up microbial cocktails for biodegradation of alkanes. Moreover, since the discovered enzymes are novel it would be interesting to solve their structures by crystallography and explore the downstream applications.
Peroxidases are classified as oxidoreductases and are the second largest class of enzymes applied in biotechnological processes. These enzymes are used to catalyze various oxidative reactions using hydrogen peroxide and other substrates as electron donors. They are isolated from various sources such as plants, animals and microbes. Peroxidase enzymes have versatile applications in bioenergy, bioremediation, dye decolorization, humic acid degradation, paper and pulp, and textile industries. Besides, peroxidases from different sources have unique abilities to degrade a broad range of environmental pollutants such as petroleum hydrocarbons, dioxins, industrial dye effluents, herbicides and pesticides. Ironically, unlike most biological catalysts, the function of peroxidases varies according to their source. For instance, manganese peroxidase (MnP) of fungal origin is widely used for depolymerization and demethylation of lignin and bleaching of pulp. While, horseradish peroxidase of plant origin is used for removal of phenols and aromatic amines from waste waters. Microbial enzymes are believed to be more stable than enzymes of plant or animal origin. Thus, making microbially-derived peroxidases a well-sought-after biocatalysts for versatile industrial and environmental applications. Therefore, the current review article highlights on the recent breakthroughs in the discovery and use of peroxidase isoforms of microbial origin at a possible depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.