Over the past several years, more focus has been placed on dissecting the genetic basis of complex diseases and traits through genome-wide association studies. In contrast, Mendelian disorders have received little attention mainly due to the lack of newer and more powerful methods to study these disorders. Linkage studies have previously been the main tool to elucidate the genetics of Mendelian disorders; however, extremely rare disorders or sporadic cases caused by de novo variants are not amendable to this study design. Exome sequencing has now become technically feasible and more cost-effective due to the recent advances in high-throughput sequence capture methods and next-generation sequencing technologies which have offered new opportunities for Mendelian disorder research. Exome sequencing has been swiftly applied to the discovery of new causal variants and candidate genes for a number of Mendelian disorders such as Kabuki syndrome, Miller syndrome and Fowler syndrome. In addition, de novo variants were also identified for sporadic cases, which would have not been possible without exome sequencing. Although exome sequencing has been proven to be a promising approach to study Mendelian disorders, several shortcomings of this method must be noted, such as the inability to capture regulatory or evolutionary conserved sequences in non-coding regions and the incomplete capturing of all exons.
Recent developments in high-throughput sequence capture methods and next-generation sequencing technologies have now made exome sequencing a viable approach to elucidate the genetic basis of Mendelian disorders with hitherto unknown etiology. In addition, exome sequencing is increasingly being employed as a diagnostic tool for specific genetic diseases, particularly in the context of those disorders characterized by significant genetic and phenotypic heterogeneity, for example, Charcot-Marie-Tooth disease and congenital disorders of glycosylation. Such disorders are challenging to interrogate with conventional polymerase chain reaction-Sanger sequencing methods, because of the inherent difficulty in prioritizing candidate genes for diagnostic testing. Here, we explore the value of exome sequencing as a diagnostic tool and discuss whether exome sequencing can come to serve a dual role in diagnosis and discovery. We summarize the current status of exome sequencing, the technical challenges facing it, and its adaptation to diagnostics, and make recommendations for the use of exome sequencing as a routine diagnostic tool. Finally, we discuss pertinent ethical concerns, such as the use of exome sequencing data, originally generated in a diagnostic context, in research investigations.
Evidence from cohort studies and randomized trials suggest beneficial effects of food sources of anthocyanidins (berries) and flavan-3-ols (green tea and cocoa) on cardiovascular health. These findings need to be confirmed in long-term randomized trials, and evaluation of pure compounds will be important to establish what specific flavonoids and doses are effective.
Regions of homozygosity (ROHs) are more abundant in the human genome than previously thought. These regions are without heterozygosity, i.e. all the genetic variations within the regions have two identical alleles. At present there are no standardized criteria for defining the ROHs resulting in the different studies using their own criteria in the analysis of homozygosity. Compared to the era of genotyping microsatellite markers, the advent of high-density single nucleotide polymorphism genotyping arrays has provided an unparalleled opportunity to comprehensively detect these regions in the whole genome in different populations. Several studies have identified ROHs which were associated with complex phenotypes such as schizophrenia, late-onset of Alzheimer's disease and height. Collectively, these studies have conclusively shown the abundance of ROHs larger than 1 Mb in outbred populations. The homozygosity association approach holds great promise in identifying genetic susceptibility loci harboring recessive variants for complex diseases and traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.