Fe2O3/MWCNT/ZnO nanocomposites were successfully synthesized through the precipitation method. The synthesis was carried out through a variation of ZnO mass, with (Fe2O3/MWCNT):ZnO mass ratio of 1:0, 1:0.5, 1:1, 1:1.5, and 0:1. The XRD analysis results suggested that the nanocomposites were composed of two phases, namely Fe2O3 with centered hexagonal structure and ZnO with hexagonal wurtzite structure. The ZnO diffraction peak tended to increase following the increasing ZnO composition within the nanocomposites. The presence of MWCNT was confirmed by the FTIR results signifying the detection of C=C vibration at wavenumbers of 1631-1640 cm -1 . The crystallite size of Fe2O3 and ZnO was in the range of 30.97-31.12 nm and 30.46-35.64 nm, respectively. The nanocomposites were comprised of the spherical, tube, and sheet particles, representing Fe2O3, MWCNT, and ZnO, respectively, with particle size ranged from 33.97 nm to 55.19 nm. The nanocomposites were observed to present weak ferromagnetic, with a decrease in saturation magnetization value following the increase of ZnO composition. The optical properties of the nanocomposites tended to decrease as the increasing ZnO composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.