, a cluster of cases of pneumonia of unknown etiology were reported linked to a market in Wuhan, China 1. The causative agent was identified as the species Severe acute respiratory syndrome-related coronavirus and was named SARS-CoV-2 (ref. 2). By 16 April the virus had spread to 185 different countries, infected over 2,000,000 people and resulted in over 130,000 deaths 3. In the Netherlands, the first case of SARS-CoV-2 was notified on 27 February. The outbreak started with several different introductory events from Italy, Austria, Germany and France followed by local amplification in, and later also outside, the south of the Netherlands. The combination of near to real-time whole-genome sequence analysis and epidemiology resulted in reliable assessments of the extent of SARS-CoV-2 transmission in the community, facilitating early decision-making to control local transmission of SARS-CoV-2 in the Netherlands. We demonstrate how these data were generated and analyzed, and how SARS-CoV-2 whole-genome sequencing, in combination with epidemiological data, was used to inform public health decision-making in the Netherlands. Whole-genome sequencing (WGS) is a powerful tool to understand the transmission dynamics of outbreaks and inform outbreak control decisions 4-7. Evidence of this was seen during the 2014-2016 West African Ebola outbreak when real-time WGS was used to help public health decision-making, a strategy dubbed 'precision public health pathogen genomics' 8,9. Immediate sharing and analysis of data during outbreaks is now recommended as an integral part of outbreak response 10-12. Feasibility of real-time WGS requires access to sequence platforms that provide reliable sequences, access to metadata for interpretation, and data analysis at high speed and low cost. Therefore, WGS for outbreak support is an active area of research. Nanopore sequencing has been employed in recent outbreaks of Usutu, Ebola, Zika and yellow fever virus owing to the ease of use and relatively low start-up cost 4-7. The robustness of this method has recently been validated using Usutu virus 13,14. In the Netherlands, the first COVID-19 case was confirmed on 27 February and WGS was performed in near to real-time using an amplicon-based sequencing approach. From 22 January, symptomatic travelers from countries where SARS-CoV-2 was known to circulate were routinely tested. The first case of SARS-CoV-2 infection in the Netherlands was identified on 27 February in a person with recent travel history to Italy and an additional case was identified one day later, also in a person with recent travel history to Italy. The genomes of these first two positive samples were generated and analyzed by 29 February. These two viruses clustered differently in the phylogenetic tree, confirming separate introductions (Fig. 1a). The advice to test hospitalized patients with serious respiratory infections was issued on 24 February and subsequent attempts to identify possible local transmission chains triggered testing for SARS-CoV-2 on a large scale in h...
ObjectivesThe objectives of this study were to determine the prevalence of carriage of ESBL-producing Enterobacteriaceae (ESBL-E) in a representative sample of the general adult Dutch community, to identify risk factors and to gain understanding of the epidemiology of these resistant strains.MethodsAdults enrolled in five general practices in Amsterdam were approached by postal mail and asked to fill in a questionnaire and to collect a faecal sample. Samples were analysed for the presence of ESBL-E. ESBL genes were characterized by PCR and sequencing. Strains were typed using MLST and amplified fragment length polymorphism (AFLP) and plasmids were identified by PCR-based replicon typing. Risk factors for carriage were investigated by multivariate analysis.ResultsESBL-E were found in 145/1695 (8.6%) samples; 91% were Escherichia coli. Most ESBL genes were of the CTX-M group (blaCTX-M-1 and blaCTX-M-15). MLST ST131 was predominant and mainly associated with CTX-M-15-producing E. coli. One isolate with reduced susceptibility to ertapenem produced OXA-48. In multivariate analyses, use of antimicrobial agents, use of antacids and travel to Africa, Asia and Northern America were associated with carriage of ESBL-E, in particular strains with blaCTX-M-14/15.ConclusionsThis study showed a high prevalence of ESBL-E carriage in the general Dutch community. Also, outside hospitals, the use of antibiotics was a risk factor; interestingly, use of antacids increased the risk of carriage. A major risk factor in the general population was travel to countries outside Europe, in particular to Asia, Africa and Northern America.
Selective decontamination of the digestive tract (SDD) selectively eradicates aerobic Gram-negative bacteria (AGNB) by the enteral administration of oral nonabsorbable antimicrobial agents, i.e., colistin and tobramycin. We retrospectively investigated the impact of SDD, applied for 5 years as part of an infection control program for the control of an outbreak with extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae in an intensive care unit (ICU), on resistance among AGNB. Colistin MICs were determined on stored ESBL-producing K. pneumoniae isolates using the Etest. The occurrence of both tobramycin resistance among pathogens intrinsically resistant to colistin (CIR) and bacteremia caused by ESBL-producing K. pneumoniae and CIR were investigated. Of the 134 retested ESBL-producing K. pneumoniae isolates, 28 were isolated before SDD was started, and all had MICs of <1.5 mg/liter. For the remaining 106 isolated after starting SDD, MICs ranged between 0.5 and 24 mg/liter. Tobramycin-resistant CIR isolates were found sporadically before the introduction of SDD, but their prevalence increased immediately afterward. Segmented regression analysis showed a highly significant relationship between SDD and resistance to tobramycin. Five patients were identified with bacteremia caused by ESBL-producing K. pneumoniae before SDD and 9 patients thereafter. No bacteremia caused by CIR was found before SDD, but its occurrence increased to 26 after the introduction of SDD. In conclusion, colistin resistance among ESBL-producing K. pneumoniae isolates emerged rapidly after SDD. In addition, both the occurrence and the proportion of tobramycin resistance among CIR increased under the use of SDD. SDD should not be applied in outbreak settings when resistant bacteria are prevalent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.