Helicase-catalyzed DNA unwinding is often studied using "all or none" assays that detect only the final product of fully unwound DNA. Even using these assays, quantitative analysis of DNA unwinding time courses for DNA duplexes of different lengths, L, using "n-step" sequential mechanisms, can reveal information about the number of intermediates in the unwinding reaction and the "kinetic step size", m, defined as the average number of basepairs unwound between two successive rate limiting steps in the unwinding cycle. Simultaneous nonlinear least-squares analysis using "n-step" sequential mechanisms has previously been limited by an inability to float the number of "unwinding steps", n, and m, in the fitting algorithm. Here we discuss the behavior of single turnover DNA unwinding time courses and describe novel methods for nonlinear least-squares analysis that overcome these problems. Analytic expressions for the time courses, f(ss)(t), when obtainable, can be written using gamma and incomplete gamma functions. When analytic expressions are not obtainable, the numerical solution of the inverse Laplace transform can be used to obtain f(ss)(t). Both methods allow n and m to be continuous fitting parameters. These approaches are generally applicable to enzymes that translocate along a lattice or require repetition of a series of steps before product formation.
The first step in the formation of the nucleosome is commonly assumed to be the deposition of a histone H3-H4 heterotetramer onto DNA. Antisilencing function 1 (ASF1) is a major histone H3-H4 chaperone that deposits histones H3 and H4 onto DNA. With a goal of understanding the mechanism of deposition of histones H3 and H4 onto DNA, we have determined the stoichiometry of the Asf1-H3-H4 complex. We have established that a single molecule of Asf1 binds to an H3-H4 heterodimer using gel filtration, amino acid, reversed-phase chromatography, and analytical ultracentrifugation analyses. We demonstrate that Asf1 blocks formation of the H3-H4 heterotetramer by a mechanism that likely involves occlusion of the H3-H3 dimerization interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.