The doubly fed induction generator (DFIG)-based wind energy conversion systems (WECSs) are prone to certain uncertainties, nonlinearities, and external disturbances. The maximum power transfer from WECS to the utility grid system requires a high-performance control system in the presence of such nonlinearities and disturbances. This paper presents a nonlinear robust chattering free super twisting fractional order terminal sliding mode control (ST-FOTSMC) strategy for both the grid side and rotor side converters of 2 MW DFIG-WECS. The Lyapunov stability theory was used to ensure the stability of the proposed closed-loop control system. The performance of the proposed control paradigm is validated using extensive numerical simulations carried out in MATLAB/Simulink environment. A detailed comparative analysis of the proposed strategy is presented with the benchmark sliding mode control (SMC) and fractional order terminal sliding mode control (FOTSMC) strategies. The proposed control scheme was found to exhibit superior performance to both the stated strategies under normal mode of operation as well as under lumped parametric uncertainties.
Global environmental changes, nuclear power risks, losses in the electricity grid, and rising energy costs are increasing the desire to rely on more renewable energy for electricity generation. Recently, most people prefer to live and work in smart places like smart cities and smart universities which integrating smart grid systems. The large part of these smart grid systems is based on hybrid energy sources which make the energy management a challenging task. Thus, the design of an intelligent energy management controller is required. The present paper proposes an intelligent energy management controller based on combined fuzzy logic and fractional-order proportional-integral-derivative (FO-PID) controller methods for a smart DC-microgrid. The hybrid energy sources integrated into the DC-microgrid are constituted by a battery bank, wind energy, and photovoltaic (PV) energy source. The source-side converters (SSCs) are controller by the new intelligent fractional order PID strategy to extract the maximum power from the renewable energy sources (wind and PV) and improve the power quality supplied to the DC-microgrid. To make the microgrid as cost-effective, the (wind and PV) energy sources are prioritized. The proposed controller ensures smooth output power and service continuity. Simulation results of the proposed control schema under Matlab/Simulink are presented and compared with the super twisting fractional-order controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.