A photovoltaic system generates energy that depends on the environmental conditions such as temperature, irradiance and the variations in the load connected to it. To adapt to the consistently increasing interest of energy, the photovoltaic (PV) system must operate at maximum power point (MPP), however, it has the issue of low efficiency because of the varying climatic conditions. To increase its efficiency, a maximum power point technique is required to extract maximum power from the PV system. In this paper, a nonlinear fast and efficient maximum power point tracking (MPPT) technique is developed based on the robust integral backstepping (RIB) approach to harvest maximum power from a PV array using non-inverting DC-DC buck-boost converter. The study uses a NeuroFuzzy network to generate the reference voltage for MPPT. Asymptotic stability of the whole system is verified using Lyapunov stability criteria. The MATLAB/Simulink platform is used to test the proposed controller performance under varying meteorological conditions. The simulation results validate that the proposed controller effectively improves the MPPT in terms of tracking speed and efficiency. For further validation of the proposed controller performance, a comparative study is presented with backstepping controller, integral backstepping, robust backstepping and conventional MPPT algorithms (PID and P&O) under rapidly varying environmental conditions.
The doubly fed induction generator (DFIG)-based wind energy conversion systems (WECSs) are prone to certain uncertainties, nonlinearities, and external disturbances. The maximum power transfer from WECS to the utility grid system requires a high-performance control system in the presence of such nonlinearities and disturbances. This paper presents a nonlinear robust chattering free super twisting fractional order terminal sliding mode control (ST-FOTSMC) strategy for both the grid side and rotor side converters of 2 MW DFIG-WECS. The Lyapunov stability theory was used to ensure the stability of the proposed closed-loop control system. The performance of the proposed control paradigm is validated using extensive numerical simulations carried out in MATLAB/Simulink environment. A detailed comparative analysis of the proposed strategy is presented with the benchmark sliding mode control (SMC) and fractional order terminal sliding mode control (FOTSMC) strategies. The proposed control scheme was found to exhibit superior performance to both the stated strategies under normal mode of operation as well as under lumped parametric uncertainties.
The state-of-charge (SoC) of an energy storage system (ESS) should be kept in a certain safe range for ensuring its state-of-health (SoH) as well as higher efficiency. This procedure maximizes the power capacity of the ESSs all the times. Furthermore, economic load dispatch (ELD) is implemented to allocate power among various ESSs, with the aim of fully meeting the load demand and reducing the total operating cost. In this research article, a distributed multi-agent consensus based control algorithm is proposed for multiple battery energy storage systems (BESSs), operating in a microgrid (MG), for fulfilling several objectives, including: SoC trajectories tracking control, economic load dispatch, active and reactive power sharing control, and voltage and frequency regulation (using the leader-follower consensus approach). The proposed algorithm considers the hierarchical control structure of the BESSs and the frequency/voltage droop controllers with limited information exchange among the BESSs. It embodies both self and communication time-delays, and achieves its objectives along with offering plug-and-play capability and robustness against communication link failure. Matlab/Simulink platform is used to test and validate the performance of the proposed algorithm under load disturbances through extensive simulations carried out on a modified IEEE 57-bus system. A detailed comparative analysis of the proposed distributed control strategy is carried out with the distributed PI-based conventional control strategy for demonstrating its superior performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.