The development and improvements in wind energy conversion systems (WECSs) are intensively focused these days because of its environment friendly nature. One of the attractive development is the maximum power extraction (MPE) subject to variations in wind speed. This paper has addressed the MPE in the presence of wind speed and parametric variation. This objective is met by designing a generalized global sliding mode control (GGSMC) for the tracking of wind turbine speed. The nonlinear drift terms and input channels, which generally evolves under uncertainties, are estimated using feed forward neural networks (FFNNs). The designed GGSMC algorithm enforced sliding mode from initial time with suppressed chattering. Therefore, the overall maximum power point tracking (MPPT) control is very robust from the start of the process which is always demanded in every practical scenario. The closed loop stability analysis, of the proposed design is rigorously presented and the simulations are carried out to authenticate the robust MPE. INDEX TERMS Feed forward neural networks (FFNNs), generalized global sliding mode controller (GGSMC), maximum power point tracking (MPPT), permanent magnet synchronous generator (PMSG), wind energy conversion systems (WECSs). The associate editor coordinating the review of this manuscript and approving it for publication was Ding Zhai.
In this paper the authors propose a novel sliding mode control methodology for Multi-Input and Multi-Output (MIMO) uncertain nonlinear systems. The proposed approach synthesizes dynamic sliding mode and integral sliding mode control strategies into dynamic integral sliding mode. The new control laws establish sliding mode without reaching phase with the use of an integral sliding manifold. Consequently, robustness against uncertainties increases from the very beginning of the process. Furthermore, the control laws considerably alleviate chattering along the switching manifold. In addition, the performance of the controller boost up in the presence of uncertainties. A comprehensive comparative analysis carried out with dynamic sliding mode control and integral sliding mode control demonstrates superiority of the newly designed control law. A chatter free regulation control of two uncertain nonlinear systems with improved performance in the presence of uncertainties ensures the robustness of the proposed dynamic integral sliding mode controller.
In this paper, a robust backstepping integral sliding mode control (RBISMC) technique is designed for the flight control of a quadcopter, which is an under-actuated nonlinear system. First, the mathematical model of this highly coupled and under-actuated system is described in the presence of dissipative drag forces. Second, a robust control algorithm is designed for the derived model to accurately track the desired outputs while ensuring the stability of attitude, altitude and position of the quadcopter. A step by step mathematical analysis, based on the Lyapunov stability theory, is performed that endorses the stability of both the fully-actuated and under-actuated subsystems of the aforementioned model. The comparison of proposed RBISMC control algorithm, with fraction order integral sliding mode control (FOISMC), affirms the enhanced performance in terms of faster states convergence, improved chattering free tracking and more robustness against uncertainties in the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.