These results indicate that chronic treatment with a 5-HTR7 agonist can prevent Aβ-related impairments in cognition and memory performance by alleviating Aβ plaque accumulation and neuronal apoptosis, hence improving neuronal plasticity. AS19 may be useful as a therapeutic agent for AD.
The neurotransmitter γ-aminobutyric acid (GABA) is involved in the process of memory. It has been reported that the inhibition of GABA receptors has beneficial effects on cognition. The aim of this study was to investigate the role of CGP35348 (a GABA receptor antagonist) on dentate gyrus GABA receptor inhibition and its effects on learning and memory impairments that had been induced in adult male rats by microinjection of β-amyloid (Aβ). Seventy Wistar male rats were randomly divided into seven groups: control, sham (receiving the Aβ vehicle only), Aβ, Aβ + CGP35348 (1, 10, and 100 μg/μL), and CGP35348 alone (10 μg/μL). Memory impairment was induced by unilateral interventricular microinjection of Aβ (6 μg/6 μL). Rats were cannulated bilaterally in the dentate gyrus, and then, they were treated for 20 consecutive days. Learning and memory were assessed using the novel object recognition and passive avoidance learning tests. The discrimination index and the step-through latency were significantly increased in the Aβ + CGP35348 group in comparison to the Aβ only group (P < 0.05 and P < 0.01, respectively). Data showed that the discrimination index was decreased in the Aβ + CGP35348 group in comparison with the control group (P < 0.05) and sham group (P < 0.01). Moreover, the step-through latency was significantly decreased in the Aβ + CGP35348 group in comparison to the control and sham groups (P < 0.01). Data from this study indicated that intra-hippocampal microinjection of the GABA receptor antagonist counteracts the learning, memory, and cognitive impairments induced by Aβ. It can be concluded that the GABA receptor antagonist is a possible therapeutic agent against the progression of acute Aβ toxicity-induced memory impairment.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline. It has been suggested that 5-hydroxytryptamine receptor 6 (5-HT6R) might be involved in AD pathology. The aim of this study was to evaluate the effect of a 5-HT6R antagonist on cognition, learning, memory, and hippocampal apoptosis in an experimental rat model of AD. AD was induced by intracerebroventricular (icv) administration of streptozotocin (STZ; 3 mg/kg, 10 μL, twice). Adult, male rats were divided into the following groups: control, sham, AD (saline treatment, 1 μL icv for 30 days), and AD + SB258585 (5-HT6R antagonist, 1 μg/μL icv for 30 days). Following the treatment period, novel object recognition (NOR) and passive avoidance learning (PAL) tests were conducted to measure cognition, as well as learning and memory, respectively. TUNEL staining was used to evaluate apoptosis in the hippocampus. This study demonstrates that icv STZ injections induce apoptosis in hippocampal cells, decrease the NOR discrimination index, increase the number of trials needed to reach acquisition and the time spent in the dark compartment during PAL, as compared with sham and control groups. Subsequent administration of SB258585 in the STZ treated rats increased the NOR discrimination index, decreased the number of trials till acquisition and the time spent in the dark compartment during PAL, while decreasing neuronal apoptosis, as compared to the untreated AD group. Thus, we conclude that long-term administration of the 5-HT6R antagonist SB258585, ameliorates AD-associated cognitive and behavioral impairments through the suppression of apoptosis in the hippocampus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.