Context: Salvianolic acids are the most abundant water-soluble compounds extracted from the herb Salvia miltiorrhiza L. (Lamiaceae) with antioxidant and protective effects. Objective: This study evaluates the antidiabetic effect of salvianolic acid B (Sal B) in multiple low-dose streptozotocin (MLDS)-induced diabetes in rat. Materials and methods: Rats were divided into control, Sal B40-treated control, diabetic, Sal B20-, and Sal B40-treated diabetic groups. Sal B was daily administered at doses of 20 or 40 mg/kg (i.p.), started on third day post-STZ injection for 3 weeks. Serum glucose and insulin level and some oxidative stress markers in pancreas were measured in addition to the oral glucose tolerance test (OGTT), histological assessment, and apoptosis determination. Results: After 3 weeks, treatment of diabetic rats with Sal B20 and Sal B40 caused a significant decrease of the serum glucose (p50.05-0.01) and improvement of OGTT. Meanwhile, serum insulin was significantly higher in Sal B20-and Sal B40-treated diabetics (p50.01) and treatment of diabetics with Sal B40 significantly lowered malondialdehyde (MDA) (p50.05), raised glutathione (GSH) (p50.05), and activity of catalase (p50.01) with no significant change of nitrite. Furthermore, the number of pancreatic islets (p50.05) and their area (p50.01) was significantly higher and apoptosis reactivity was significantly lower (p50.05) in the Sal B40-treated diabetic group versus diabetics. Discussion and conclusion: Three-week treatment of diabetic rats with Sal B exhibited antidiabetic activity which is partly exerted via attenuation of oxidative stress and apoptosis and augmentation of antioxidant system.
The neurotransmitter γ-aminobutyric acid (GABA) is involved in the process of memory. It has been reported that the inhibition of GABA receptors has beneficial effects on cognition. The aim of this study was to investigate the role of CGP35348 (a GABA receptor antagonist) on dentate gyrus GABA receptor inhibition and its effects on learning and memory impairments that had been induced in adult male rats by microinjection of β-amyloid (Aβ). Seventy Wistar male rats were randomly divided into seven groups: control, sham (receiving the Aβ vehicle only), Aβ, Aβ + CGP35348 (1, 10, and 100 μg/μL), and CGP35348 alone (10 μg/μL). Memory impairment was induced by unilateral interventricular microinjection of Aβ (6 μg/6 μL). Rats were cannulated bilaterally in the dentate gyrus, and then, they were treated for 20 consecutive days. Learning and memory were assessed using the novel object recognition and passive avoidance learning tests. The discrimination index and the step-through latency were significantly increased in the Aβ + CGP35348 group in comparison to the Aβ only group (P < 0.05 and P < 0.01, respectively). Data showed that the discrimination index was decreased in the Aβ + CGP35348 group in comparison with the control group (P < 0.05) and sham group (P < 0.01). Moreover, the step-through latency was significantly decreased in the Aβ + CGP35348 group in comparison to the control and sham groups (P < 0.01). Data from this study indicated that intra-hippocampal microinjection of the GABA receptor antagonist counteracts the learning, memory, and cognitive impairments induced by Aβ. It can be concluded that the GABA receptor antagonist is a possible therapeutic agent against the progression of acute Aβ toxicity-induced memory impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.