To reduce the likelihood of errors in organ delineations used for radiotherapy treatment planning, a knowledge-based quality control (KBQC) system, which discriminates between valid and anomalous delineations is developed. Method and Materials:The KBQC is comprised of a group-wise inference system and anomaly detection modules trained using historical priors from 296 locally advanced lung and prostate cancer patient computational tomographies (CTs). The inference system discriminates different organs based on shape, relational, and intensity features. For a given delineated image set, the inference system solves a combinatorial optimization problem that results in an organ group whose relational features follow those of the training set considering the posterior probabilities obtained from support vector machine (SVM), discriminant subspace ensemble (DSE), and artificial neural network (ANN) classifiers. These classifiers are trained on nonrelational features with a 10-fold crossvalidation scheme. The anomaly detection module is a bank of ANN autoencoders, each corresponding with an organ, trained on nonrelational features. A heuristic rule detects anomalous organs that exceed predefined organ-specific tolerances for the feature reconstruction error and the classifier's posterior probabilities. Independent data sets with anomalous delineations were used to test the overall performance of the KBQC system. The anomalous delineations were manually manipulated, computer-generated, or propagated based on a transformation obtained by imperfect registrations. Both peer-review-based scoring system and shape similarity coefficient (DSC) were used to label regions of interest (ROIs) as normal or anomalous in two independent test cohorts. Results: The accuracy of the classifiers was ≥99.8%, and the minimum perclass F1-scores were 0.99, 0.99, and 0.98 for SVM, DSE, and ANN, respectively. The group-wise inference system reduced the miss-classification likelihood for the test data set with anomalous delineations compared to each individual classifier and a fused classifier that used the average posterior probability of all classifiers. For 15 independent locally advanced lung patients, the system detected >79% of the anomalous ROIs. For 1320 auto-segmented abdominopelvic organs, the anomaly detection system identified anomalous delineations, which also had low Dice similarity coefficient values with respect to manually delineated organs in the training data set. Conclusion:The KBQC system detected anomalous delineations with superior accuracy compared to classification methods that judge only based on posterior probabilities.
Gait recognition using noninvasively acquired data has been attracting an increasing interest in the last decade. Among various modalities of data sources, it is experimentally found that the data involving skeletal representation are amenable for reliable feature compaction and fast processing. Model-based gait recognition methods that exploit features from a fitted model, like skeleton, are recognized for their view and scale-invariant properties. We propose a model-based gait recognition method, using sequences recorded by a single flash lidar. Existing state-of-the-art model-based approaches that exploit features from high quality skeletal data collected by Kinect and Mocap are limited to controlled laboratory environments. The performance of conventional research efforts is negatively affected by poor data quality. We address the problem of gait recognition under challenging scenarios, such as lower quality and noisy imaging process of lidar, that degrades the performance of state-of-the-art skeleton-based systems. We present GlidarCo to attain high accuracy on gait recognition under the described conditions. A filtering mechanism corrects faulty skeleton joint measurements, and robust statistics are integrated to conventional feature moments to encode the dynamic of the motion. As a comparison, length-based and vector-based features extracted from the noisy skeletons are investigated for outlier removal. Experimental results illustrate the efficacy of the proposed methodology in improving gait recognition given noisy low resolution lidar data.
Gait recognition is a leading remote-based identification method, suitable for real-world surveillance and medical applications. Model-based gait recognition methods have been particularly recognized due to their scale and view-invariant properties. We present the first model-based gait recognition methodology, Glidar3DJ using a skeleton model extracted from sequences generated by a single flash lidar camera. Existing successful model-based approaches take advantage of high quality skeleton data collected by Kinect and Mocap, for example, are not practicable for application outside the laboratory. The low resolution and noisy imaging process of lidar negatively affects the performance of state-of-the-art skeleton-based systems, generating a significant number of outlier skeletons. We propose a rule-based filtering mechanism that adopts robust statistics to correct for skeleton joint measurements. Quantitative measurements validate the efficacy of the proposed method in improving gait recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.