Pyrolysis of palm kernel shell in a fixed-bed reactor was studied in this paper. The objectives were to investigate the effect of pyrolysis temperature and particle size on the products yield and to characterize the bio-oil product. In order to get the optimum pyrolysis parameters on bio-oil yield, temperatures of 350, 400, 450, 500 and 550 °C and particle sizes of 212-300 µm, 300-600 µm, 600µm-1.18 mm and 1.18-2.36 mm under a heating rate of 50 °C min -1 were investigated. The maximum bio-oil yield was 38.40% at 450 °C with a heating rate of 50 °C min -1 and a nitrogen sweep gas flow rate of 50 ml min -1 . The bio-oil products were analysed by Fourier transform infra-red spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GCMS). The FTIR analysis showed that the bio-oil was dominated by oxygenated species. The phenol, phenol, 2-methoxy-and furfural that were identified by GCMS analysis are highly suitable for extraction from the bio-oil as value-added chemicals. The highly oxygenated oils need to be upgraded in order to be used in other applications such as transportation fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.