A unit geodesic vector field on a Riemannian manifold is a vector field whose integral curves are geodesics, or in other worlds have zero acceleration. A geodesic vector field on a Riemannian manifold is a smooth vector field with acceleration of each of its integral curves is proportional to velocity. In this paper, we show that the presence of a geodesic vector field on a Riemannian manifold influences its geometry. We find characterizations of n-spheres as well as Euclidean spaces using geodesic vector fields.
We find three necessary and sufficient conditions for an n-dimensional compact Ricci almost soliton (M,g,w,σ) to be a trivial Ricci soliton under the assumption that the soliton vector field w is a geodesic vector field (a vector field with integral curves geodesics). The first result uses condition r2≤nσr on a nonzero scalar curvature r; the second result uses the condition that the soliton vector field w is an eigen vector of the Ricci operator with constant eigenvalue λ satisfying n2λ2≥r2; the third result uses a suitable lower bound on the Ricci curvature S(w,w). Finally, we show that an n-dimensional connected Ricci almost soliton (M,g,w,σ) with soliton vector field w is a geodesic vector field with a trivial Ricci soliton, if and only if, nσ−r is a constant along integral curves of w and the Ricci curvature S(w,w) has a suitable lower bound.
We extend the study of orientable hypersurfaces in a Sasakian manifold initiated by Watanabe. The Reeb vector field ξ of the Sasakian manifold induces a vector field ξ T on the hypersurface, namely the tangential component of ξ to hypersurface, and it also gives a smooth function ρ on the hypersurface, which is the projection of the Reeb vector field on the unit normal. First, we find volume estimates for a compact orientable hypersurface and then we use them to find an upper bound of the first nonzero eigenvalue of the Laplace operator on the hypersurface, showing that if the equality holds then the hypersurface is isometric to a certain sphere. Also, we use a bound on the energy of the vector field ∇ ρ on a compact orientable hypersurface in a Sasakian manifold in order to find another geometric condition (in terms of mean curvature and integral curves of ξ T ) under which the hypersurface is isometric to a sphere. Finally, we study compact orientable hypersurfaces with constant mean curvature in a Sasakian manifold and find a sharp upper bound on the first nonzero eigenvalue of the Laplace operator on the hypersurface. In particular, we show that this upper bound is attained if and only if the hypersurface is isometric to a sphere, provided that the Ricci curvature of the hypersurface along ∇ ρ has a certain lower bound.
The concircularity property of vector fields implies the geodesicity property, while the converse of this statement is not true. The main objective of this note is to find conditions under which the concircularity and geodesicity properties of vector fields are equivalent. Moreover, it is shown that the geodesicity property of vector fields is also useful in characterizing not only spheres, but also Euclidean spaces.
In this article, we investigate perfect fluid spacetimes equipped with concircular vector field. At first, in a perfect fluid spacetime admitting concircular vector field, we prove that the velocity vector field annihilates the conformal curvature tensor. In addition, in dimension 4, we show that a perfect fluid spacetime is a generalized Robertson–Walker spacetime with Einstein fibre. It is proved that if a perfect fluid spacetime furnished with concircular vector field admits a second order symmetric parallel tensor P, then either the equation of state of the perfect fluid spacetime is characterized by $$p=\frac{3-n}{n-1} \sigma $$ p = 3 - n n - 1 σ , or the tensor P is a constant multiple of the metric tensor. Finally, The perfect fluid spacetimes with concircular vector field whose Lorentzian metrics are Ricci soliton, gradient Ricci soliton, gradient Yamabe solitons, and gradient m -quasi Einstein solitons, are characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.