Selective androgen receptor modulators (SARMs) are an emerging class of therapeutics targeted to cachexia, sarcopenia, and hypogonadism treatment. LGD-4033 is a SARM which has been included on the Prohibited List annually released by the World Anti-Doping Agency (WADA). The aim of the present work was the investigation of the metabolism of LGD-4033 in a human excretion study after administration of an LGD-4033 supplement, the determination of the metabolites' excretion profiles with special interest in the determination of its long-term metabolites, and the comparison of the excretion time of the phase I and phase II metabolites. The results were also compared to those derived from previous LGD-4033 studies concerning both in vitro and in vivo experiments. Supplement containing LGD-4033 was administered to one human male volunteer and urine samples were collected up to almost 21 days. Analysis of the hydrolyzed (with β-glucuronidase) as well as of the non-hydrolyzed samples was performed using liquid chromatography-high resolution mass spectrometry (LC-HRMS) in negative ionization mode and revealed that, in both cases, the two isomers of the dihydroxylated metabolite (M5) were preferred target metabolites. The glucoconjugated parent LGD-4033 and its gluco-conjugated metabolites M1 and M2 can be also considered as useful target analytes in non-hydrolyzed samples. The study also presents two trihydroxylated metabolites (M6) identified for the first time in human urine; one of them was recently reported in an LGD-4033 metabolism study in horse urine and plasma. KEYWORDS human doping, LGD-4033, liquid chromatography-mass spectrometry, SARM, selective androgen receptor modulator
The artificial increase of the physical capability of horses using drugs is well known in racing and other equine sports. Both illicit and therapeutic substances are regarded as prohibited substances in competition in most countries. Some countries make distinctions for a few, specific drugs which are, however, allowed for use in other countries. The primary objective in the case of doping control is the detection of any trace of drug exposure, either parent drug or any of its metabolites, using the most powerful analytical methods which are generally based on chromatographic/mass spectrometric techniques. Of major concern in horseracing is the absence of a single organization regulating the anti-doping framework; instead of this, individual racing authorities provide rules and regulations often resulting in variations in the applied doping control programmes of different countries. The aim of this paper is to review the recent literature (approximately from 2012 to mid-2016) to highlight the numerous and diverse challenges faced in doping control of racing and equestrian sports, including the detection of designer drugs (anabolic steroids or stimulants) and of other emerging prohibited substances, such as peptides and noble gases in horse urine and plasma. Moreover, the application of 'omics' techniques (especially of metabolomics) deserves attention for establishing possible fingerprints of drug abuse as well as the evolution of instrumental analysis resulting a powerful ally in the fight against doping in equine sports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.