We find an exact quantized expression of the Schwarzschild solution to Einstein’s field equations utilizing spherical Planck units in a generalized holographic approach. We consider vacuum fluctuations within volumes as well as on horizon surfaces, generating a discrete spacetime quantization and a novel quantized approach to gravitation. When applied at the quantum scale, utilizing the charge radius of the proton, we find values for the rest mass of the proton within 0.069x10e-24 g of the CODATA value and when the 2010 muonic proton charge radius measurement is utilized we find a deviation of 0.001x10e-24 g from the proton rest mass. We identify a fundamental mass ratio between the vacuum oscillations on the surface horizon and the oscillations within the volume of a proton and find a solution for the gravitational coupling constant to the strong interaction. We derive the energy, angular frequency, and period for such a system and determine its gravitational potential considering mass dilation. We find the force range to be closely correlated with the Yukawa potential typically utilized to illustrate the exponential drop-off of the confining force. Zero free parameters or hidden variables areutilized.
The recent developments of advanced models of unified physics have brought a deeper understanding of the fundamental nature of space, time, energy and matter. It is becoming apparent that information and geometry are primary to explaining these fundamental agents. In previous work, we demonstrated that the subatomic nucleon structure of the proton and recently the electron can be derived directly from a spacetime holographic structure of Planck-scale quantum vacuum oscillators fluctuating as spacetime pixels, demonstrating that spacetime at the very fine level of the Planck-scale is discrete with information quanta. We have found that when considering the granular spacetime information-energy structure from which we demonstrate matter and mass arises, the phenomena of self-organizing systems that leads to self-awareness and consciousness is integral to—and a naturalemergent property of the feedback-dynamics of spacetime information itself. In this work, we describe how the integral function of the information feedback dynamics of spacetime, which engender mass-energy, is the missing element in understanding the evolution and development of self-organizing physical systems in general, and the emergence of the biological organism in particular. We evaluate non-classical quantum mechanical phenomena of physical and biological systems in light of the Maldacena-Susskind holographic correspondence theorem from which an equivalence of wormhole spacetime geometry and quantum entanglement is derived. We suggest that the Planck-scale micro-wormhole entanglement structure of multiple spacetime coordinates engender the macromolecular assemblies of living cells, and that this wormhole-entanglement may function in the memory andlearning capacity of the biological entity. Furthermore, the recursive information encoding feedback processes of the quantum spacetime micro-wormhole network, which we refer to as spacememory, enables memory and learning in physical systems across all scales, resulting in universal evolutionary tendencies towards higher levels of ordering and complexity – foundational to evolution, sentience, and awareness.
We consider the latest results of the measurement of the charge radius of the proton utilizing laser spectroscopy of muonic hydrogen published in Science on January 25, 2013 by an international team lead by Aldo Antognini and carried out at the Paul Scherrer Institute Proton Accelerator. Given the new charge radius measurement, we compute the proton mass utilizing our generalized holographic approach and find that our result is now within 0.00072x10e-24 g of the 2010-CODATA value of the proton rest mass. Our predicted charge radius is now within 0.00036x10e-13 cm and remains within one standard deviation of the new measurement.
The recent developments of advanced models of unified physics have brought a deeper understanding of the fundamental nature of space, time, energy and matter. It is becoming apparent that information and geometry are primary to explaining these fundamental agents. In previous work, we demonstrated that the subatomic nucleon structure of the proton and recently the electron can be derived directly from a spacetime holographic structure of Planck-scale quantum vacuum oscillators fluctuating as spacetime pixels, demonstrating that spacetime at the very fine level of the Planck-scale is discrete with information quanta. We have found that when considering the granular spacetime information-energy structure from which we demonstrate matter and mass arises, the phenomena of self-organizing systems that leads to self-awareness and consciousness is integral to-and a natural emergent property of the feedback-dynamics of spacetime information itself. In this work, we describe how the integral function of the information feedback dynamics of spacetime, which engender mass-energy, is the missing element in understanding the evolution and development of self-organizing physical systems in general, and the emergence of the biological organism in particular. We evaluate non-classical quantum mechanical phenomena of physical and biological systems in light of the Maldacena-Susskind holographic correspondence theorem from which an equivalence of wormhole spacetime geometry and quantum entanglement is derived. We suggest that the Planck-scale micro-wormhole entanglement structure of multiple spacetime coordinates engender the macromolecular assemblies of living cells, and that this wormhole-entanglement may function in the memory and learning capacity of the biological entity. Furthermore, the recursive information encoding feedback processes of the quantum spacetime micro-wormhole network, which we refer to as spacememory, enables memory and learning in physical systems across all scales, resulting in universal evolutionary tendencies towards higher levels of ordering and complexity -foundational to evolution, sentience, and awareness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.