Vegetation indices and canopy temperature are the most usual remote sensing approaches to assess cereal performance. Understanding the relationships of these parameters and yield may help design more efficient strategies to monitor crop performance. We present an evaluation of vegetation indices (derived from RGB images and multispectral data) and water status traits (through the canopy temperature, stomatal conductance and carbon isotopic composition) measured during the reproductive stage for genotype phenotyping in a study of four wheat genotypes growing under different water and nitrogen regimes in north Algeria. Differences among the cultivars were reported through the vegetation indices, but not with the water status traits. Both approximations correlated significantly with grain yield (GY), reporting stronger correlations under support irrigation and N-fertilization than the rainfed or the no N-fertilization conditions. For N-fertilized trials (irrigated or rainfed) water status parameters were the main factors predicting relative GY performance, while in the absence of N-fertilization, the green canopy area (assessed through GGA) was the main factor negatively correlated with GY. Regression models for GY estimation were generated using data from three consecutive growing seasons. The results highlighted the usefulness of vegetation indices derived from RGB images predicting GY.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.