Amelotin (AMTN) is a recently discovered protein that is specifically expressed during the maturation stage of dental enamel formation. It is localized at the interface between the enamel surface and the apical surface of ameloblasts. AMTN knock-out mice have hypomineralized enamel, whereas transgenic mice overexpressing AMTN have a compact but disorganized enamel hydroxyapatite (HA) microstructure, indicating a possible involvement of AMTN in regulating HA mineralization directly. In this study, we demonstrated that recombinant human (rh) AMTN dissolved in a metastable buffer system, based on light scattering measurements, promotes HA precipitation. The mineral precipitates were characterized by scanning and transmission electron microscopy and electron diffraction. Colloidal gold immunolabeling of AMTN in the mineral deposits showed that protein molecules were associated with HA crystals. The binding affinity of rh-AMTN to HA was found to be comparable to that of amelogenin, the major protein of the forming enamel matrix. Overexpression of AMTN in mouse calvaria cells also increased the formation of calcium deposits in the culture medium. Overexpression of AMTN during the secretory stage of enamel formation in vivo resulted in rapid and uncontrolled enamel mineralization. Site-specific mutagenesis of the potential serine phosphorylation motif SSEEL reduced the in vitro mineral precipitation to less than 25%, revealing that this motif is important for the HA mineralizing function of the protein. A synthetic short peptide containing the SSEEL motif was only able to facilitate mineralization in its phosphorylated form ( P S P SEEL), indicating that this motif is necessary but not sufficient for the mineralizing properties of AMTN. These findings demonstrate that AMTN has a direct influence on biomineralization by promoting HA mineralization and suggest a critical role for AMTN in the formation of the compact aprismatic enamel surface layer during the maturation stage of amelogenesis.
Enamel, covering the surface of teeth, is the hardest substance in mammals. It is designed to last a lifetime in spite of severe environmental challenges. Enamel is formed in a biomineralization process that is essentially divided into secretory and maturation stages. While the molecular events of enamel formation during the secretory stage have been elucidated to some extent, the mechanisms of enamel maturation are less defined, and little is known about the molecules present beyond the maturation stage. Several genes, all located within the secreted calcium-binding phosphoprotein (SCPP) gene cluster, were recently shown to be expressed during the developmental continuum from maturation stage ameloblasts to junctional epithelium (JE). This review introduces four such genes and their protein products, and presents our current state of knowledge on their roles, primarily in enamel formation and JE biology. The discovery of these proteins, and a more detailed analysis of their biological functions, will likely contribute to a more thorough understanding of the molecular mechanisms of enamel maturation and dentogingival attachment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.