BackgroundHuman immunodeficiency virus (HIV) promotes an inflammatory process, leading to the progressive loss of the functional capacity of the immune system. The HIV infection induces alterations in several tissues, but mainly in the gut-associated lymphoid tissue (GALT). However, the degree of GALT deterioration varies among infected individuals. In fact, it has been shown that HIV-controllers, who spontaneously control viral replication, exhibit a lower inflammatory response, and a relative normal frequency and function of most of the immune cells. Inflammasomes are molecular complexes involved in the inflammatory response, being NLRP1, NLRP3, NLRC4, AIM2 and Pyrin inflammasomes, the best characterized so far. These complexes regulate the maturation of cytokines of the IL-1 family, including IL-1β and IL-18. These cytokines have been associated with immune activation and expansion of HIV target cells, promoting viral replication. Interesting, some reports indicate that HIV induces the activation of the NLRP3 inflammasome, but the role of this, and other inflammasomes during HIV infection, especially in GALT, remains unclear.ObjectiveTo compare the relative expression of inflammasome components and the proinflammatory response related to their activity, between HIV-progressors and HIV-controllers.MethodsGALT biopsies and peripheral blood mononuclear cells (PBMCs) from 15 HIV-controllers and 15 HIV-progressors were obtained. The relative expression of the following inflammasome components were evaluated by RT-PCR: NLRP3, NLRC4, NLRP1, AIM2, ASC, Caspase-1, IL-1β and IL-18. In addition, plasma concentration of IL-18 was evaluated as an indicator of baseline proinflammatory status. Finally, in supernatants of PBMCs in vitro stimulated with inflammasome agonists, the concentrations of IL-1β and IL-18 were quantified by ELISA.ResultsHIV-progressors exhibited higher expression of IL-1β, IL-18 and caspase-1 genes in GALT and PBMCs compared with HIV-controllers. In addition, HIV-progressors had also increased expression of ASC in PBMCs. When plasma levels were evaluated, IL-18 was increased in HIV-progressors. Interesting, these patients also showed an increased production of IL-1β in supernatants of PBMCs stimulated in vitro with the agonists of AIM2, NLRP1 and NLRC4 inflammasomes. Finally, the expression of caspase-1, NLRP1, IL-1β and IL-18 in GALT or peripheral blood was correlated with CD4+ T-cell count and viral load.ConclusionOur results suggest that during HIV-infection, the required signals to induce the expression of different components of the inflammasomes are produced, both in GALT and in periphery. The activation of these molecular complexes could increase the number of target cells, favoring HIV replication and cell death, promoting the disease progression.
Due to the scarcity of therapeutic approaches for COVID-19, we investigated the antiviral and anti-inflammatory properties of curcumin against SARS-CoV-2 using in vitro models. The cytotoxicity of curcumin was evaluated using MTT assay in Vero E6 cells. The antiviral activity of this compound against SARS-CoV-2 was evaluated using four treatment strategies (i. pre–post infection treatment, ii. co-treatment, iii. pre-infection, and iv. post-infection). The D614G strain and Delta variant of SARS-CoV-2 were used, and the viral titer was quantified by plaque assay. The anti-inflammatory effect was evaluated in peripheral blood mononuclear cells (PBMCs) using qPCR and ELISA. By pre–post infection treatment, Curcumin (10 µg/mL) exhibited antiviral effect of 99% and 99.8% against DG614 strain and Delta variant, respectively. Curcumin also inhibited D614G strain by pre-infection and post-infection treatment. In addition, curcumin showed a virucidal effect against D614G strain and Delta variant. Finally, the pro-inflammatory cytokines (IL-1β, IL-6, and IL-8) released by PBMCs triggered by SARS-CoV-2 were decreased after treatment with curcumin. Our results suggest that curcumin affects the SARS-CoV-2 replicative cycle and exhibits virucidal effect with a variant/strain independent antiviral effect and immune-modulatory properties. This is the first study that showed a combined (antiviral/anti-inflammatory) effect of curcumin during SARS-CoV-2 infection. However, additional studies are required to define its use as a treatment for the COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.