Summary
Establishment of effective immunity against invading microbes depends on continuous generation of antibodies that facilitate pathogen clearance. Long‐lived plasma cells with the capacity to produce high affinity antibodies evolve in germinal centers (GCs), where B cells undergo somatic hypermutation and are subjected to affinity‐based selection. Here, we focus on the cellular interactions that take place early in the antibody immune response during GC colonization. Clones bearing B‐cell receptors with different affinities and specificities compete for entry to the GC, at the boundary between the B‐cell and T‐cell zones in lymphoid organs. During this process, B cells compete for interactions with T follicular helper cells, which provide selection signals required for differentiation into GC cells and antibody secreting cells. These cellular engagements are long‐lasting and depend on activation of adhesion molecules that support persistent interactions and promote transmission of signals between the cells. Here, we discuss how interactions between cognate T and B cells are primarily maintained by three types of molecular interactions: homophilic signaling lymphocytic activation molecule (SLAM) interactions, T‐cell receptor: peptide‐loaded major histocompatibility class II (pMHCII), and LFA‐1:ICAMs. These essential components support a three‐step process that controls clonal selection for entry into the antibody affinity maturation response in the GC, and establishment of long‐lasting antibody‐mediated immunity.
Germinal centers (GCs) are sites wherein B cells proliferate and mutate their immunoglobulins in the dark zone (DZ), followed by affinity-based selection in the light zone (LZ). Here, we mapped the location of single B cells in the context of intact lymph nodes (LNs) throughout the GC response, and examined the role of BCR affinity in dictating their position. Imaging of entire GC structures and proximal single cells by light-sheet fluorescence microscopy revealed that individual B cells that previously expressed AID are located within the LN cortex, in an area close to the GC LZ. Using in situ photoactivation, we demonstrated that B cells migrate from the LZ toward the GC outskirts, while DZ B cells are confined to the GC. B cells expressing very-low-affinity BCRs formed GCs but were unable to efficiently disperse within the follicles. Our findings reveal that BCR affinity regulates B cell positioning during the GC response.
Germinal centers (GCs) are sites at which B cells proliferate and mutate their antibody-encoding genes in the dark zone (DZ), followed by affinity-based selection in the light zone (LZ). B cell antigen receptor (BCR) signals induce Syk activation followed by rapid phosphatase-mediated desensitization; however, how degradation events regulate BCR functions in GCs is unclear. Here, we found that Syk degradation restrains plasma cell (PC) formation in GCs and promotes B cell LZ to DZ transition. Using a mouse model defective in Cbl-mediated Syk degradation, we demonstrate that this machinery attenuates BCR signaling intensity by mitigating the Kras/Erk and PI3K/Foxo1 pathways, and restricting the expression of PC transcription factors in GC B cells. Inhibition of Syk degradation perturbed gene expression, specifically in the LZ, and enhanced the generation of PCs without affecting B cell proliferation. These findings reveal how long-lasting attenuation of signal transduction by degradation events regulates cell fate within specialized microanatomical sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.